Matches in SemOpenAlex for { <https://semopenalex.org/work/W69653685> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W69653685 abstract "In this dissertation we consider Hopf algebras that satisfy a polynomial identity as algebras or coalgebras. The notion of a polynomial identity for an algebra is classical. The dual notion of an identity for a coalgebra is new. -- In Chapter 0 we give basic definitions and facts that are used throughout the rest of this work. -- Chapter 1 is devoted to coalgebras with a polynomial identity. First we introduce the notion of identity of a coalgebra and discuss its general properties. Then we study what classes of coalgebras are varieties, i.e. can be defined by a set of identities. In the case of algebras, varieties are characterized by the classical Theorem of Birkhoff. Somewhat unexpectedly, the dual statement for coalgebras does not hold. Further, we give two realizations of a relatively (co)free coalgebra of a variety: one via the so called finite dual of a relatively free algebra and the other a direct construction using some kind of symmetric functions. -- In Chapter 2 we give necessary and sufficient conditions for a cocommutative Hopf algebra (with additional restrictions in the case of prime characteristic) to satisfy a polynomial identity as an algebra. These results generalize the well-known Passman's Theorem on group algebras with a polynomial identity and Bahturin-Latysev's Theorem on universal enveloping algebras with a polynomial identity. The proofs for the case of prime characteristic are given in Chapter 4. -- In Chapter 3 we dualize the results of Chapter 2 to obtain some criteria for a commutative Hopf algebra (assumed reduced in the case of prime characteristic) to satisfy an identity as a coalgebra. We also extend our result in charecteristic zero to a certain class of nearly commutative Hopf algebras (pseudoinvolutive Hopf algebras of Etingof-Gelaki). -- Finally, in Chapter 4 we use the interpretation of cocommutative Hopf algebras as formal groups to prove the results of Chapter 2. Our method also demonstrates that Bahturin-Latysev's Theorem in characteristic zero is in fact a corollary of Passman's Theorem. -- For the most part, this dissertation is based on my papers [19], [20], and [21]." @default.
- W69653685 created "2016-06-24" @default.
- W69653685 creator A5025564367 @default.
- W69653685 date "2009-12-03" @default.
- W69653685 modified "2023-09-27" @default.
- W69653685 title "Polynomial Identities of Hopf Algebras" @default.
- W69653685 hasPublicationYear "2009" @default.
- W69653685 type Work @default.
- W69653685 sameAs 69653685 @default.
- W69653685 citedByCount "0" @default.
- W69653685 crossrefType "book" @default.
- W69653685 hasAuthorship W69653685A5025564367 @default.
- W69653685 hasConcept C105795698 @default.
- W69653685 hasConcept C121332964 @default.
- W69653685 hasConcept C134306372 @default.
- W69653685 hasConcept C136119220 @default.
- W69653685 hasConcept C136197465 @default.
- W69653685 hasConcept C202444582 @default.
- W69653685 hasConcept C24890656 @default.
- W69653685 hasConcept C2778249326 @default.
- W69653685 hasConcept C2778355321 @default.
- W69653685 hasConcept C29712632 @default.
- W69653685 hasConcept C33923547 @default.
- W69653685 hasConcept C90119067 @default.
- W69653685 hasConceptScore W69653685C105795698 @default.
- W69653685 hasConceptScore W69653685C121332964 @default.
- W69653685 hasConceptScore W69653685C134306372 @default.
- W69653685 hasConceptScore W69653685C136119220 @default.
- W69653685 hasConceptScore W69653685C136197465 @default.
- W69653685 hasConceptScore W69653685C202444582 @default.
- W69653685 hasConceptScore W69653685C24890656 @default.
- W69653685 hasConceptScore W69653685C2778249326 @default.
- W69653685 hasConceptScore W69653685C2778355321 @default.
- W69653685 hasConceptScore W69653685C29712632 @default.
- W69653685 hasConceptScore W69653685C33923547 @default.
- W69653685 hasConceptScore W69653685C90119067 @default.
- W69653685 hasLocation W696536851 @default.
- W69653685 hasOpenAccess W69653685 @default.
- W69653685 hasPrimaryLocation W696536851 @default.
- W69653685 hasRelatedWork W117862287 @default.
- W69653685 hasRelatedWork W1498560348 @default.
- W69653685 hasRelatedWork W1647936888 @default.
- W69653685 hasRelatedWork W1951956811 @default.
- W69653685 hasRelatedWork W1977428906 @default.
- W69653685 hasRelatedWork W2014704189 @default.
- W69653685 hasRelatedWork W2029351002 @default.
- W69653685 hasRelatedWork W2113153491 @default.
- W69653685 hasRelatedWork W2113817297 @default.
- W69653685 hasRelatedWork W2170835830 @default.
- W69653685 hasRelatedWork W2277678787 @default.
- W69653685 hasRelatedWork W2317095695 @default.
- W69653685 hasRelatedWork W2568103024 @default.
- W69653685 hasRelatedWork W2605076440 @default.
- W69653685 hasRelatedWork W2951006309 @default.
- W69653685 hasRelatedWork W2963628665 @default.
- W69653685 hasRelatedWork W3099071849 @default.
- W69653685 hasRelatedWork W3213907940 @default.
- W69653685 hasRelatedWork W358958519 @default.
- W69653685 hasRelatedWork W64088088 @default.
- W69653685 isParatext "false" @default.
- W69653685 isRetracted "false" @default.
- W69653685 magId "69653685" @default.
- W69653685 workType "book" @default.