Matches in SemOpenAlex for { <https://semopenalex.org/work/W6966139> ?p ?o ?g. }
Showing items 1 to 46 of
46
with 100 items per page.
- W6966139 abstract "A polarised variety is a modern generalization of the notion of a variety in classical algebraic geometry. It consists of a pair: the algebraic variety itself, together with an ample line bundle on it. Using techniques from abstract algebraic geometry that have been developed over recent decades, Professor Fujita develops classification theories of such pairs using invariants that are polarised higher-dimensional versions of the genus of algebraic curves. The heart of the book is the theory of D-genus and sectional genus developed by the author, but numerous related topics are discussed or surveyed. Proofs are given in full in the central part of the development, but background and technical results are sometimes just sketched when the details are not essential for understanding the key ideas. Readers are assumed to have some background in algebraic geometry, including sheaf cohomology, and for them this work will provide an illustration of the power of modern abstract techniques applied to concrete geometric problems. Thus the book helps the reader not only to understand about classical objects but also modern methods, and so it will be useful not only for experts but also non-specialists and graduate students." @default.
- W6966139 created "2016-06-24" @default.
- W6966139 creator A5014282074 @default.
- W6966139 date "1990-01-01" @default.
- W6966139 modified "2023-10-04" @default.
- W6966139 title "Classification Theories of Polarized Varieties" @default.
- W6966139 doi "https://doi.org/10.1017/cbo9780511662638" @default.
- W6966139 hasPublicationYear "1990" @default.
- W6966139 type Work @default.
- W6966139 sameAs 6966139 @default.
- W6966139 citedByCount "265" @default.
- W6966139 countsByYear W69661392012 @default.
- W6966139 countsByYear W69661392013 @default.
- W6966139 countsByYear W69661392014 @default.
- W6966139 countsByYear W69661392015 @default.
- W6966139 countsByYear W69661392016 @default.
- W6966139 countsByYear W69661392017 @default.
- W6966139 countsByYear W69661392018 @default.
- W6966139 countsByYear W69661392019 @default.
- W6966139 countsByYear W69661392020 @default.
- W6966139 countsByYear W69661392021 @default.
- W6966139 countsByYear W69661392022 @default.
- W6966139 countsByYear W69661392023 @default.
- W6966139 crossrefType "monograph" @default.
- W6966139 hasAuthorship W6966139A5014282074 @default.
- W6966139 hasConcept C33923547 @default.
- W6966139 hasConcept C41008148 @default.
- W6966139 hasConceptScore W6966139C33923547 @default.
- W6966139 hasConceptScore W6966139C41008148 @default.
- W6966139 hasLocation W69661391 @default.
- W6966139 hasOpenAccess W6966139 @default.
- W6966139 hasPrimaryLocation W69661391 @default.
- W6966139 hasRelatedWork W1587224694 @default.
- W6966139 hasRelatedWork W1979597421 @default.
- W6966139 hasRelatedWork W2007980826 @default.
- W6966139 hasRelatedWork W2061531152 @default.
- W6966139 hasRelatedWork W2077600819 @default.
- W6966139 hasRelatedWork W2748952813 @default.
- W6966139 hasRelatedWork W2899084033 @default.
- W6966139 hasRelatedWork W3002753104 @default.
- W6966139 hasRelatedWork W4225152035 @default.
- W6966139 hasRelatedWork W4245490552 @default.
- W6966139 isParatext "false" @default.
- W6966139 isRetracted "false" @default.
- W6966139 magId "6966139" @default.
- W6966139 workType "book" @default.