Matches in SemOpenAlex for { <https://semopenalex.org/work/W70075910> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W70075910 endingPage "81" @default.
- W70075910 startingPage "57" @default.
- W70075910 abstract "The advance of BMIs was largely motivated by investigations of velocity encoding in single neurons during stereotypical reaching experiments. However, BMIs are designed to decode neural activity from an ensemble of neurons and direct general reaching movements. Hence, neural data analysis strategies for BMIs are required to: (1) analyze the neural activity from ensemble of neurons, (2) account for the dynamical nature of the neural activity associated with general reaching movements, and (3) explore and exploit other relevant modulating signals.Decoding neural activity can be performed either in a single stage or two stages. Two-stage decoding relies on a preliminary encoding stage to determine how the neurons are tuned to the relevant biological signals. Based on the estimated tuning curves, the neural activity across an ensemble of neurons can be decoded using either a population-vector, maximum likelihood estimation, or Bayesian inference (Pouget et al., 2003). The population-vector approach results in a linear relationship between the spike counts and the estimated biological signal, which can be estimated directly in a single stage using linear regression (Brown et al., 2004). This chapter focuses on single-stage decoding with linear regression, and in particular on two special challenges facing the application of linear regression to neural ensemble decoding during reaching movements (see “Movement Prediction”). First, given the dynamic nature of the decoded signal, it is necessary to include the history of the neural activity, rather than just its current spike count. Second, due to the correlation between the activities of different neurons (see “Ensemble Analysis”) and the activities in different time lags, the resulting regression problem is ill-posed and requires regularization techniques (see “Linear Regression”).Although neural decoding can be performed in a single stage, neural encoding is still important for investigating which signals are encoded in the neural activity. For this purpose, the notion of tuning curves is generalized to characterize how the neural activity represents the spatiotemporal profile of the movement. This analysis quantifies both the spatiotemporal tuning curves and the percent variance of the neural activity that is accounted by the movement profile (see “Neuronal Encoding and Tuning Curves”). For comparison, the percent variance in the neural activity that might be related to general neural modulations is assessed independently under the Poisson assumption (see “Neuronal Modulations”). These two-faced variance analyses provide a viable tool for quantifying the extent to which the neural code is effectively decoded, and the potential contribution of yet undecoded modulating signals.The strategies and algorithms described in this chapter are demonstrated using the neural activity recorded from an ensemble of cortical neurons in different brain areas during a typical target-hitting experiment with pole control as described in Carmena et al., 2003." @default.
- W70075910 created "2016-06-24" @default.
- W70075910 creator A5012491109 @default.
- W70075910 creator A5079342047 @default.
- W70075910 date "2007-12-03" @default.
- W70075910 modified "2023-09-23" @default.
- W70075910 title "Strategies for Neural Ensemble Data Analysis for Brain–Machine Interface (BMI) Applications" @default.
- W70075910 cites W1273318020 @default.
- W70075910 cites W1543237449 @default.
- W70075910 cites W1596990491 @default.
- W70075910 cites W1949922239 @default.
- W70075910 cites W1987005584 @default.
- W70075910 cites W1991266025 @default.
- W70075910 cites W1996583563 @default.
- W70075910 cites W2015071882 @default.
- W70075910 cites W2017224289 @default.
- W70075910 cites W2019800929 @default.
- W70075910 cites W2040517289 @default.
- W70075910 cites W2040739363 @default.
- W70075910 cites W2041248708 @default.
- W70075910 cites W2051772022 @default.
- W70075910 cites W2059577639 @default.
- W70075910 cites W2063379973 @default.
- W70075910 cites W2110513315 @default.
- W70075910 cites W2114825563 @default.
- W70075910 cites W2127806105 @default.
- W70075910 cites W2147680579 @default.
- W70075910 cites W2471670251 @default.
- W70075910 doi "https://doi.org/10.1201/9781420006414.ch4" @default.
- W70075910 hasPublicationYear "2007" @default.
- W70075910 type Work @default.
- W70075910 sameAs 70075910 @default.
- W70075910 citedByCount "4" @default.
- W70075910 countsByYear W700759102012 @default.
- W70075910 countsByYear W700759102014 @default.
- W70075910 countsByYear W700759102021 @default.
- W70075910 crossrefType "book-chapter" @default.
- W70075910 hasAuthorship W70075910A5012491109 @default.
- W70075910 hasAuthorship W70075910A5079342047 @default.
- W70075910 hasConcept C111919701 @default.
- W70075910 hasConcept C113843644 @default.
- W70075910 hasConcept C129307140 @default.
- W70075910 hasConcept C15744967 @default.
- W70075910 hasConcept C157915830 @default.
- W70075910 hasConcept C169760540 @default.
- W70075910 hasConcept C173201364 @default.
- W70075910 hasConcept C41008148 @default.
- W70075910 hasConcept C522805319 @default.
- W70075910 hasConceptScore W70075910C111919701 @default.
- W70075910 hasConceptScore W70075910C113843644 @default.
- W70075910 hasConceptScore W70075910C129307140 @default.
- W70075910 hasConceptScore W70075910C15744967 @default.
- W70075910 hasConceptScore W70075910C157915830 @default.
- W70075910 hasConceptScore W70075910C169760540 @default.
- W70075910 hasConceptScore W70075910C173201364 @default.
- W70075910 hasConceptScore W70075910C41008148 @default.
- W70075910 hasConceptScore W70075910C522805319 @default.
- W70075910 hasLocation W700759101 @default.
- W70075910 hasOpenAccess W70075910 @default.
- W70075910 hasPrimaryLocation W700759101 @default.
- W70075910 hasRelatedWork W2015326241 @default.
- W70075910 hasRelatedWork W2296761738 @default.
- W70075910 hasRelatedWork W2380647523 @default.
- W70075910 hasRelatedWork W2390569096 @default.
- W70075910 hasRelatedWork W2393285213 @default.
- W70075910 hasRelatedWork W2556895317 @default.
- W70075910 hasRelatedWork W2592357088 @default.
- W70075910 hasRelatedWork W2917517086 @default.
- W70075910 hasRelatedWork W3017025976 @default.
- W70075910 hasRelatedWork W2071129935 @default.
- W70075910 isParatext "false" @default.
- W70075910 isRetracted "false" @default.
- W70075910 magId "70075910" @default.
- W70075910 workType "book-chapter" @default.