Matches in SemOpenAlex for { <https://semopenalex.org/work/W70273497> ?p ?o ?g. }
- W70273497 abstract "This thesis studies within-host virus dynamics by mathematical models, and topics discussed include viral release strategies, viral spreading mechanism, and interaction of virus with the immune system. Firstly, we propose a delay differential equation model with distributed delay to investigate the evolutionary competition between budding and lytic viral release strategies. We find that when an antibody is not established, the dynamics of competition depends on the respective basic reproduction numbers of the two viruses. If the basic reproductive ratio of budding virus is greater than that of lytic virus and one, budding virus can survive. When an antibody is established for both strains but the neutralization capacities are the same for both strains, consequence of the competition also depends only on the basic reproduction numbers of the budding and lytic viruses. Using two concrete forms of the viral production functions, we are also able to conclude that budding virus will outcompete if the rates of viral production, death rates of infected cells and neutralizing capacities of the antibodies are the same for budding and lytic viruses. In this case, budding strategy would have evolutionary advantage. However, if the antibody neutralization capacity for the budding virus is larger than that for the lytic virus, lytic virus can outcompete provided that its reproductive ratio is very high. An explicit threshold is derived. Secondly, we consider model containing two modes for viral infection and spread, one is the diffusion-limited free virus transmission and the other is the direct cell-to-cell transfer of viral particles. By incorporating infection age, a rigorous analysis of the model shows that the model demonstrates a global threshold dynamics, fully described by the basic reproduction number, which is identified explicitly. The formula for the basic reproduction number of our model reveals the effects of various model parameters including the transmission rates of the two modes, and the impact of the infection age. We show that the basic reproduction number is underestimated in the existing models that only consider the cell-free virus transmission, or the cell-to-cell infection, ignoring the other. Assuming logistic growth for target cells, we find that if the basic reproduction number is greater than one, the infection can persist and Hopf bifurcation can occur from the positive equilibrium within certain parameter ranges. Thirdly, the repulsion effect of superinfecting virion by infected cells is studied by a reaction diffusion equation model for virus infection dynamics. In this model, the diffusion of virus depends not only on its concentration gradient but also on the concentration of infected" @default.
- W70273497 created "2016-06-24" @default.
- W70273497 creator A5033033981 @default.
- W70273497 date "2014-01-01" @default.
- W70273497 modified "2023-09-27" @default.
- W70273497 title "Study of Virus Dynamics by Mathematical Models" @default.
- W70273497 cites W107538457 @default.
- W70273497 cites W1217515891 @default.
- W70273497 cites W1510768077 @default.
- W70273497 cites W1520434148 @default.
- W70273497 cites W1522687244 @default.
- W70273497 cites W1523793067 @default.
- W70273497 cites W1544160017 @default.
- W70273497 cites W1557952727 @default.
- W70273497 cites W1586658033 @default.
- W70273497 cites W1607633954 @default.
- W70273497 cites W163166059 @default.
- W70273497 cites W1851248039 @default.
- W70273497 cites W1963713643 @default.
- W70273497 cites W1963823660 @default.
- W70273497 cites W1964764190 @default.
- W70273497 cites W1966771136 @default.
- W70273497 cites W1967398944 @default.
- W70273497 cites W1967940959 @default.
- W70273497 cites W1968061373 @default.
- W70273497 cites W1971808848 @default.
- W70273497 cites W1975783007 @default.
- W70273497 cites W1976166148 @default.
- W70273497 cites W1979273095 @default.
- W70273497 cites W1980587508 @default.
- W70273497 cites W1987347396 @default.
- W70273497 cites W1991818212 @default.
- W70273497 cites W1992589140 @default.
- W70273497 cites W1993220987 @default.
- W70273497 cites W1993800687 @default.
- W70273497 cites W1995174870 @default.
- W70273497 cites W2002933331 @default.
- W70273497 cites W2009497399 @default.
- W70273497 cites W2012374634 @default.
- W70273497 cites W2015207750 @default.
- W70273497 cites W2019602916 @default.
- W70273497 cites W2020009024 @default.
- W70273497 cites W2020422739 @default.
- W70273497 cites W2022098233 @default.
- W70273497 cites W2022120813 @default.
- W70273497 cites W2022212158 @default.
- W70273497 cites W2022606730 @default.
- W70273497 cites W2023090332 @default.
- W70273497 cites W2023871431 @default.
- W70273497 cites W2024560016 @default.
- W70273497 cites W2027480533 @default.
- W70273497 cites W2030185456 @default.
- W70273497 cites W2030541908 @default.
- W70273497 cites W2034996626 @default.
- W70273497 cites W2039138612 @default.
- W70273497 cites W2040589148 @default.
- W70273497 cites W2041572706 @default.
- W70273497 cites W2044403736 @default.
- W70273497 cites W2046985721 @default.
- W70273497 cites W2048340704 @default.
- W70273497 cites W2049223241 @default.
- W70273497 cites W2051695714 @default.
- W70273497 cites W2055339872 @default.
- W70273497 cites W2059116373 @default.
- W70273497 cites W2059395503 @default.
- W70273497 cites W2060735144 @default.
- W70273497 cites W2061241509 @default.
- W70273497 cites W2061245907 @default.
- W70273497 cites W2061262640 @default.
- W70273497 cites W2061657962 @default.
- W70273497 cites W2065237420 @default.
- W70273497 cites W2067241000 @default.
- W70273497 cites W2067851171 @default.
- W70273497 cites W2068604088 @default.
- W70273497 cites W2070646617 @default.
- W70273497 cites W2071448055 @default.
- W70273497 cites W2072867280 @default.
- W70273497 cites W2073692798 @default.
- W70273497 cites W2075864449 @default.
- W70273497 cites W2076326718 @default.
- W70273497 cites W2077613383 @default.
- W70273497 cites W2082413189 @default.
- W70273497 cites W2083044021 @default.
- W70273497 cites W2085405685 @default.
- W70273497 cites W2085722235 @default.
- W70273497 cites W2085789074 @default.
- W70273497 cites W2086092877 @default.
- W70273497 cites W2086865438 @default.
- W70273497 cites W2087606723 @default.
- W70273497 cites W2089171051 @default.
- W70273497 cites W2089692155 @default.
- W70273497 cites W2095703604 @default.
- W70273497 cites W2095890428 @default.
- W70273497 cites W2096542385 @default.
- W70273497 cites W2097912258 @default.
- W70273497 cites W2099533369 @default.
- W70273497 cites W2100298806 @default.
- W70273497 cites W2103028984 @default.
- W70273497 cites W2105607559 @default.
- W70273497 cites W2110780972 @default.