Matches in SemOpenAlex for { <https://semopenalex.org/work/W71306150> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W71306150 endingPage "183" @default.
- W71306150 startingPage "180" @default.
- W71306150 abstract "Facial gesture recognition (FGR) is considered as a state-of-the-art which has drawn the researchers’ attention in numerous fields of study due to its high potential in different applications. Recognizing the gestures through bio-signals generated from facial muscle movements has been recently proposed as an accurate and reliable pathway. The performance of gesture recognition-based systems directly depends on the effectiveness of classification techniques. Besides, a reasonable trade-off between recognition accuracy and computational cost is counted as the most significant factor for designing such systems. The aim of this paper was the classification of facial gestures electromyogram (EMG) signals by means of a least square support vector machine (LS-SVM) algorithm. Ten predefined facial gestures EMGs were recorded from ten participants through three bi-polar channels. Acquired signals were preprocessed using a band-pass filter and a segmentation technique. Then, time-domain features mean absolute value (MAV) and root mean square (RMS) were extracted from each segment. In order to classify the features, LS-SVM was implemented by considering radial basis function kernel and two multiclass encoding schemes, one-versus-one (OVO) and oneversus- all (OVA). This research showed that LS-SVM was a robust method for classification of facial gestures with 97.1% classification accuracy and 1.37 seconds training time when utilizing the feature combination MAV+RMS and the encoding technique OVA. It was also concluded that LS-SVM outperformed SVM and fuzzy c-means classifiers in this field of study. The results of this paper can be used as efficient processing tools in designing reliable interfaces for FGR systems." @default.
- W71306150 created "2016-06-24" @default.
- W71306150 creator A5006247004 @default.
- W71306150 creator A5007063784 @default.
- W71306150 creator A5015313342 @default.
- W71306150 creator A5029527161 @default.
- W71306150 creator A5041919435 @default.
- W71306150 date "2014-01-01" @default.
- W71306150 modified "2023-09-24" @default.
- W71306150 title "Multiclass Least-Square Support Vector Machine for Myoelectric-Based Facial Gesture Recognition" @default.
- W71306150 cites W1596717185 @default.
- W71306150 cites W2005569959 @default.
- W71306150 cites W2047704048 @default.
- W71306150 cites W2106526692 @default.
- W71306150 cites W2108081952 @default.
- W71306150 cites W2119821739 @default.
- W71306150 cites W2143571537 @default.
- W71306150 cites W2156472488 @default.
- W71306150 cites W2156909104 @default.
- W71306150 cites W2165412197 @default.
- W71306150 cites W2165766155 @default.
- W71306150 cites W2169693351 @default.
- W71306150 cites W2171026366 @default.
- W71306150 cites W2290346069 @default.
- W71306150 cites W3023786531 @default.
- W71306150 doi "https://doi.org/10.1007/978-3-319-02913-9_46" @default.
- W71306150 hasPublicationYear "2014" @default.
- W71306150 type Work @default.
- W71306150 sameAs 71306150 @default.
- W71306150 citedByCount "2" @default.
- W71306150 countsByYear W713061502015 @default.
- W71306150 countsByYear W713061502020 @default.
- W71306150 crossrefType "book-chapter" @default.
- W71306150 hasAuthorship W71306150A5006247004 @default.
- W71306150 hasAuthorship W71306150A5007063784 @default.
- W71306150 hasAuthorship W71306150A5015313342 @default.
- W71306150 hasAuthorship W71306150A5029527161 @default.
- W71306150 hasAuthorship W71306150A5041919435 @default.
- W71306150 hasConcept C12267149 @default.
- W71306150 hasConcept C123860398 @default.
- W71306150 hasConcept C135692309 @default.
- W71306150 hasConcept C153180895 @default.
- W71306150 hasConcept C154945302 @default.
- W71306150 hasConcept C207347870 @default.
- W71306150 hasConcept C2524010 @default.
- W71306150 hasConcept C28490314 @default.
- W71306150 hasConcept C31972630 @default.
- W71306150 hasConcept C33923547 @default.
- W71306150 hasConcept C41008148 @default.
- W71306150 hasConceptScore W71306150C12267149 @default.
- W71306150 hasConceptScore W71306150C123860398 @default.
- W71306150 hasConceptScore W71306150C135692309 @default.
- W71306150 hasConceptScore W71306150C153180895 @default.
- W71306150 hasConceptScore W71306150C154945302 @default.
- W71306150 hasConceptScore W71306150C207347870 @default.
- W71306150 hasConceptScore W71306150C2524010 @default.
- W71306150 hasConceptScore W71306150C28490314 @default.
- W71306150 hasConceptScore W71306150C31972630 @default.
- W71306150 hasConceptScore W71306150C33923547 @default.
- W71306150 hasConceptScore W71306150C41008148 @default.
- W71306150 hasLocation W713061501 @default.
- W71306150 hasOpenAccess W71306150 @default.
- W71306150 hasPrimaryLocation W713061501 @default.
- W71306150 hasRelatedWork W2041399278 @default.
- W71306150 hasRelatedWork W2057046019 @default.
- W71306150 hasRelatedWork W2099369243 @default.
- W71306150 hasRelatedWork W2120008580 @default.
- W71306150 hasRelatedWork W2136184105 @default.
- W71306150 hasRelatedWork W2163073107 @default.
- W71306150 hasRelatedWork W4223656335 @default.
- W71306150 hasRelatedWork W4285281467 @default.
- W71306150 hasRelatedWork W2187500075 @default.
- W71306150 hasRelatedWork W2345184372 @default.
- W71306150 isParatext "false" @default.
- W71306150 isRetracted "false" @default.
- W71306150 magId "71306150" @default.
- W71306150 workType "book-chapter" @default.