Matches in SemOpenAlex for { <https://semopenalex.org/work/W7225426> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W7225426 endingPage "127" @default.
- W7225426 startingPage "124" @default.
- W7225426 abstract "M/EEG inverse modeling with distributed dipolar source models and penalizations with sparsity inducing norms (e.g. l1 withMCE [1], l0 with FOCUSS [2], l2 − l1 [3]) offer a way to select a set of active dipoles. Indeed, sparsity inducing norms lead to solutions where most of the sources are set to zero and the remaining non zero sources form the set of estimated active dipoles. When running cognitive studies multiple experimental conditions are usually involved and cognitive hypothesis classically consist in quantifying the difference between these conditions. The problem is that when a sparse inverse solver is used independently for each experimental condition, it happens that the selection of dipolar sources is not consistent across conditions, thus limiting further analysis. Even if all conditions share a common dipolar source, due to noise, it can happen that such solvers do not select exactly the same dipole but two neighboring ones. To circumvent this limitation, we propose in this contribution to run the inverse computation with all the experimental conditions simultaneously. We use a penalization that achieves a joint selection of active dipoles while estimating two parts in the reconstructed current distributions: a part that is common to all the different conditions and a part that is specific to each condition. The penalization used in the inverse problem is based on groups of l2 − l1 norms. The optimization is achieved with iterative least squares (iterative l2 Minimum Norm) making the solver tractable on large datasets. The method is illustrated on toy data and validated on synthetic MEG data reproducing activations appearing for somesthesic finger stimulations. We call our solver SMC (Sparse Multi-Condition)." @default.
- W7225426 created "2016-06-24" @default.
- W7225426 creator A5018256474 @default.
- W7225426 date "2010-01-01" @default.
- W7225426 modified "2023-10-18" @default.
- W7225426 title "Multi-condition M/EEG Inverse Modeling with Sparsity Assumptions: How to Estimate What Is Common and What Is Specific in Multiple Experimental Conditions" @default.
- W7225426 cites W1560866515 @default.
- W7225426 cites W1941099773 @default.
- W7225426 cites W1973042443 @default.
- W7225426 cites W2065919982 @default.
- W7225426 cites W2121744457 @default.
- W7225426 cites W2124492617 @default.
- W7225426 cites W2165411673 @default.
- W7225426 cites W2512603352 @default.
- W7225426 doi "https://doi.org/10.1007/978-3-642-12197-5_25" @default.
- W7225426 hasPublicationYear "2010" @default.
- W7225426 type Work @default.
- W7225426 sameAs 7225426 @default.
- W7225426 citedByCount "1" @default.
- W7225426 crossrefType "book-chapter" @default.
- W7225426 hasAuthorship W7225426A5018256474 @default.
- W7225426 hasBestOaLocation W72254262 @default.
- W7225426 hasConcept C11413529 @default.
- W7225426 hasConcept C126255220 @default.
- W7225426 hasConcept C134306372 @default.
- W7225426 hasConcept C135252773 @default.
- W7225426 hasConcept C177264268 @default.
- W7225426 hasConcept C17744445 @default.
- W7225426 hasConcept C191795146 @default.
- W7225426 hasConcept C199360897 @default.
- W7225426 hasConcept C199539241 @default.
- W7225426 hasConcept C207467116 @default.
- W7225426 hasConcept C2524010 @default.
- W7225426 hasConcept C2778770139 @default.
- W7225426 hasConcept C28826006 @default.
- W7225426 hasConcept C33923547 @default.
- W7225426 hasConcept C41008148 @default.
- W7225426 hasConcept C45374587 @default.
- W7225426 hasConceptScore W7225426C11413529 @default.
- W7225426 hasConceptScore W7225426C126255220 @default.
- W7225426 hasConceptScore W7225426C134306372 @default.
- W7225426 hasConceptScore W7225426C135252773 @default.
- W7225426 hasConceptScore W7225426C177264268 @default.
- W7225426 hasConceptScore W7225426C17744445 @default.
- W7225426 hasConceptScore W7225426C191795146 @default.
- W7225426 hasConceptScore W7225426C199360897 @default.
- W7225426 hasConceptScore W7225426C199539241 @default.
- W7225426 hasConceptScore W7225426C207467116 @default.
- W7225426 hasConceptScore W7225426C2524010 @default.
- W7225426 hasConceptScore W7225426C2778770139 @default.
- W7225426 hasConceptScore W7225426C28826006 @default.
- W7225426 hasConceptScore W7225426C33923547 @default.
- W7225426 hasConceptScore W7225426C41008148 @default.
- W7225426 hasConceptScore W7225426C45374587 @default.
- W7225426 hasLocation W72254261 @default.
- W7225426 hasLocation W72254262 @default.
- W7225426 hasLocation W72254263 @default.
- W7225426 hasOpenAccess W7225426 @default.
- W7225426 hasPrimaryLocation W72254261 @default.
- W7225426 hasRelatedWork W2038237443 @default.
- W7225426 hasRelatedWork W2051641144 @default.
- W7225426 hasRelatedWork W2105454037 @default.
- W7225426 hasRelatedWork W2107861471 @default.
- W7225426 hasRelatedWork W2121744457 @default.
- W7225426 hasRelatedWork W2143644377 @default.
- W7225426 hasRelatedWork W2147549783 @default.
- W7225426 hasRelatedWork W2154604910 @default.
- W7225426 hasRelatedWork W2169000144 @default.
- W7225426 hasRelatedWork W2289940819 @default.
- W7225426 hasRelatedWork W2585868105 @default.
- W7225426 hasRelatedWork W2754888733 @default.
- W7225426 hasRelatedWork W2951396542 @default.
- W7225426 hasRelatedWork W2953167782 @default.
- W7225426 hasRelatedWork W2964081564 @default.
- W7225426 hasRelatedWork W3012081863 @default.
- W7225426 hasRelatedWork W3016449737 @default.
- W7225426 hasRelatedWork W3119013337 @default.
- W7225426 hasRelatedWork W2590457536 @default.
- W7225426 hasRelatedWork W2821662226 @default.
- W7225426 isParatext "false" @default.
- W7225426 isRetracted "false" @default.
- W7225426 magId "7225426" @default.
- W7225426 workType "book-chapter" @default.