Matches in SemOpenAlex for { <https://semopenalex.org/work/W72487483> ?p ?o ?g. }
- W72487483 endingPage "276" @default.
- W72487483 startingPage "223" @default.
- W72487483 abstract "This chapter discusses the comparison of perturbation methods for nonlinear hyperbolic waves. It discusses five numbers of perturbation methods including the method of renormalization, the method of strained coordinates, the analytic method of characteristics, the method of multiple scales, and the Krylov–Bogoliubov–Mitropolsky method. These techniques are applied to nonlinear acoustic waves propagating in thermoviscous fluids. For lossless, oppositely traveling, one-dimensional waves, a first-order uniformly valid expansion can be obtained by using any of these techniques provided the waves do not mutually interact in the body of the medium. This is so if the waves are periodic or pulses. If the mutual-interaction terms are not negligible, only the method of renormalization, strained coordinates, and characteristics can be used. For dissipative media, it is not clear how one can use the method of renormalization, strained coordinates, and characteristics to determine an approximate solution when the dissipation term is the same order as the nonlinear term. For conservative multidimensional waves, a combination of the methods of renormalization and matched asymptotic expansions appear to be the most powerful. In applying the analytic method of characteristics to multi-dimensional waves, one can obtain uniformly valid expansions only if the characteristic surfaces are chosen appropriately. For waves that are short compared with the radii of curvature of the wave fronts, choosing the appropriate characteristics does not present any difficulty because the linear solution displays the role of the characteristic and geometric rays." @default.
- W72487483 created "2016-06-24" @default.
- W72487483 creator A5042354204 @default.
- W72487483 date "1980-01-01" @default.
- W72487483 modified "2023-09-23" @default.
- W72487483 title "A Comparison of Perturbation Methods for Nonlinear Hyperbolic Waves" @default.
- W72487483 cites W1057021034 @default.
- W72487483 cites W1437246826 @default.
- W72487483 cites W1497956805 @default.
- W72487483 cites W16314830 @default.
- W72487483 cites W1649083986 @default.
- W72487483 cites W1663143588 @default.
- W72487483 cites W1966252406 @default.
- W72487483 cites W1966793263 @default.
- W72487483 cites W1978113829 @default.
- W72487483 cites W1983799961 @default.
- W72487483 cites W1988662525 @default.
- W72487483 cites W1988942018 @default.
- W72487483 cites W1989132854 @default.
- W72487483 cites W1989269802 @default.
- W72487483 cites W2004252479 @default.
- W72487483 cites W2015366176 @default.
- W72487483 cites W2017238384 @default.
- W72487483 cites W2032987056 @default.
- W72487483 cites W2036915488 @default.
- W72487483 cites W2039729024 @default.
- W72487483 cites W2040313607 @default.
- W72487483 cites W2045384647 @default.
- W72487483 cites W2048681411 @default.
- W72487483 cites W2070876804 @default.
- W72487483 cites W2072521316 @default.
- W72487483 cites W2073707908 @default.
- W72487483 cites W2074160490 @default.
- W72487483 cites W2075620380 @default.
- W72487483 cites W2076759778 @default.
- W72487483 cites W2077915024 @default.
- W72487483 cites W2079135761 @default.
- W72487483 cites W2080849518 @default.
- W72487483 cites W2082129041 @default.
- W72487483 cites W2084423697 @default.
- W72487483 cites W2089927820 @default.
- W72487483 cites W2090527929 @default.
- W72487483 cites W2091212133 @default.
- W72487483 cites W2103319169 @default.
- W72487483 cites W2106967986 @default.
- W72487483 cites W2127046343 @default.
- W72487483 cites W2130000176 @default.
- W72487483 cites W2131399040 @default.
- W72487483 cites W2143695370 @default.
- W72487483 cites W2150866694 @default.
- W72487483 cites W2155589669 @default.
- W72487483 cites W2156595388 @default.
- W72487483 cites W2245672069 @default.
- W72487483 cites W2318513316 @default.
- W72487483 cites W2325183500 @default.
- W72487483 cites W2328182219 @default.
- W72487483 cites W2565432921 @default.
- W72487483 cites W2603003341 @default.
- W72487483 cites W748893521 @default.
- W72487483 cites W1971416043 @default.
- W72487483 cites W1983696132 @default.
- W72487483 cites W2025249430 @default.
- W72487483 cites W2095555951 @default.
- W72487483 doi "https://doi.org/10.1016/b978-0-12-493260-9.50013-8" @default.
- W72487483 hasPublicationYear "1980" @default.
- W72487483 type Work @default.
- W72487483 sameAs 72487483 @default.
- W72487483 citedByCount "20" @default.
- W72487483 countsByYear W724874832012 @default.
- W72487483 countsByYear W724874832015 @default.
- W72487483 countsByYear W724874832018 @default.
- W72487483 countsByYear W724874832020 @default.
- W72487483 crossrefType "book-chapter" @default.
- W72487483 hasAuthorship W72487483A5042354204 @default.
- W72487483 hasConcept C121332964 @default.
- W72487483 hasConcept C134306372 @default.
- W72487483 hasConcept C158622935 @default.
- W72487483 hasConcept C166124518 @default.
- W72487483 hasConcept C177918212 @default.
- W72487483 hasConcept C195065555 @default.
- W72487483 hasConcept C2524010 @default.
- W72487483 hasConcept C33923547 @default.
- W72487483 hasConcept C37914503 @default.
- W72487483 hasConcept C62520636 @default.
- W72487483 hasConcept C74650414 @default.
- W72487483 hasConcept C99692599 @default.
- W72487483 hasConceptScore W72487483C121332964 @default.
- W72487483 hasConceptScore W72487483C134306372 @default.
- W72487483 hasConceptScore W72487483C158622935 @default.
- W72487483 hasConceptScore W72487483C166124518 @default.
- W72487483 hasConceptScore W72487483C177918212 @default.
- W72487483 hasConceptScore W72487483C195065555 @default.
- W72487483 hasConceptScore W72487483C2524010 @default.
- W72487483 hasConceptScore W72487483C33923547 @default.
- W72487483 hasConceptScore W72487483C37914503 @default.
- W72487483 hasConceptScore W72487483C62520636 @default.
- W72487483 hasConceptScore W72487483C74650414 @default.
- W72487483 hasConceptScore W72487483C99692599 @default.