Matches in SemOpenAlex for { <https://semopenalex.org/work/W72568052> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W72568052 abstract "This chapter is concerned with a method for the numerical evaluation of the probability mass function of ({M_{{A_1}}}(t)) under the semi-Markov assumption. The notation from Chapters 8 and 9 is retained here. The method considered here is based on explicit expressions for the Laplace transforms of the family of vector-valued functions defined in (9.12). In Section 10.1, which is devoted to the theory, the ‘generalised renewal argument’, already familiar in the semi-Markov context from the previous two chapters, is used to arrive at a set of recursive integral equations for the family of functions in (9.12). These equations are then solved in the Laplace transform domain. In Section 10.2, the method which will be used later for the numerical inversion of the Laplace transforms and its NAG implementation are discussed. In Section 10.3, two reliability examples are considered. The first one is the Markov model of a two-unit system in a fluctuating environment, formulated as Model 1 in Section 1.2.1. This example allows the proposed method to be assessed in the light of the results by the closed form expressions for the Markov case from Section 5.2.1. The second example is the semi-Markov model of a two- unit system of transformers, known from Section 1.2.2 as Model 7. The results for this case are validated by simulation. Section 10.4 is devoted to implementation issues. The language of implementation of the present method was FORTRAN 77 on the VAX mainframe using the commercially available, and in the U.K. very popular, numerical subroutine library NAG [NUM]. Some of the most important features of this library will be summarized. The alternative to using a software library is, of course, writing one’s own procedures. To corroborate MATLAB’s power and to discuss the notion and the use of what is termed a ‘function function’ we also provide a MATLAB implementation of the Laplace transform inversion algorithm used in this chapter; the MATLAB code will turn out to be very concise." @default.
- W72568052 created "2016-06-24" @default.
- W72568052 creator A5053177765 @default.
- W72568052 date "1994-01-01" @default.
- W72568052 modified "2023-09-27" @default.
- W72568052 title "The Number of Visits to a Subset of the State Space by an Irreducible Semi-Markov Process during a Finite Time Interval: The Probability Mass Function" @default.
- W72568052 doi "https://doi.org/10.1007/978-1-4612-2674-1_10" @default.
- W72568052 hasPublicationYear "1994" @default.
- W72568052 type Work @default.
- W72568052 sameAs 72568052 @default.
- W72568052 citedByCount "0" @default.
- W72568052 crossrefType "book-chapter" @default.
- W72568052 hasAuthorship W72568052A5053177765 @default.
- W72568052 hasConcept C105795698 @default.
- W72568052 hasConcept C106666656 @default.
- W72568052 hasConcept C111919701 @default.
- W72568052 hasConcept C134306372 @default.
- W72568052 hasConcept C159886148 @default.
- W72568052 hasConcept C163836022 @default.
- W72568052 hasConcept C189973286 @default.
- W72568052 hasConcept C2780129039 @default.
- W72568052 hasConcept C28826006 @default.
- W72568052 hasConcept C33923547 @default.
- W72568052 hasConcept C41008148 @default.
- W72568052 hasConcept C54907487 @default.
- W72568052 hasConcept C97937538 @default.
- W72568052 hasConcept C98763669 @default.
- W72568052 hasConceptScore W72568052C105795698 @default.
- W72568052 hasConceptScore W72568052C106666656 @default.
- W72568052 hasConceptScore W72568052C111919701 @default.
- W72568052 hasConceptScore W72568052C134306372 @default.
- W72568052 hasConceptScore W72568052C159886148 @default.
- W72568052 hasConceptScore W72568052C163836022 @default.
- W72568052 hasConceptScore W72568052C189973286 @default.
- W72568052 hasConceptScore W72568052C2780129039 @default.
- W72568052 hasConceptScore W72568052C28826006 @default.
- W72568052 hasConceptScore W72568052C33923547 @default.
- W72568052 hasConceptScore W72568052C41008148 @default.
- W72568052 hasConceptScore W72568052C54907487 @default.
- W72568052 hasConceptScore W72568052C97937538 @default.
- W72568052 hasConceptScore W72568052C98763669 @default.
- W72568052 hasLocation W725680521 @default.
- W72568052 hasOpenAccess W72568052 @default.
- W72568052 hasPrimaryLocation W725680521 @default.
- W72568052 hasRelatedWork W104364161 @default.
- W72568052 hasRelatedWork W1544388232 @default.
- W72568052 hasRelatedWork W1587208585 @default.
- W72568052 hasRelatedWork W1990744979 @default.
- W72568052 hasRelatedWork W203815698 @default.
- W72568052 hasRelatedWork W2080107107 @default.
- W72568052 hasRelatedWork W2094980306 @default.
- W72568052 hasRelatedWork W2194360883 @default.
- W72568052 hasRelatedWork W2483985268 @default.
- W72568052 hasRelatedWork W2587796270 @default.
- W72568052 hasRelatedWork W2912273178 @default.
- W72568052 hasRelatedWork W2952406218 @default.
- W72568052 hasRelatedWork W3081918956 @default.
- W72568052 hasRelatedWork W3121742243 @default.
- W72568052 hasRelatedWork W3123326318 @default.
- W72568052 hasRelatedWork W51909660 @default.
- W72568052 hasRelatedWork W999023752 @default.
- W72568052 hasRelatedWork W1546280061 @default.
- W72568052 hasRelatedWork W2151528401 @default.
- W72568052 hasRelatedWork W2571839991 @default.
- W72568052 isParatext "false" @default.
- W72568052 isRetracted "false" @default.
- W72568052 magId "72568052" @default.
- W72568052 workType "book-chapter" @default.