Matches in SemOpenAlex for { <https://semopenalex.org/work/W7261346> ?p ?o ?g. }
- W7261346 endingPage "94" @default.
- W7261346 startingPage "41" @default.
- W7261346 abstract "For most of our 25,000 genes, the removal of introns by pre-messenger RNA (pre-mRNA) splicing represents an essential step toward the production of functional messenger RNAs (mRNAs). Alternative splicing of a single pre-mRNA results in the production of different mRNAs. Although complex organisms use alternative splicing to expand protein function and phenotypic diversity, patterns of alternative splicing are often altered in cancer cells. Alternative splicing contributes to tumorigenesis by producing splice isoforms that can stimulate cell proliferation and cell migration or induce resistance to apoptosis and anticancer agents. Cancer-specific changes in splicing profiles can occur through mutations that are affecting splice sites and splicing control elements, and also by alterations in the expression of proteins that control splicing decisions. Recent progress in global approaches that interrogate splicing diversity should help to obtain specific splicing signatures for cancer types. The development of innovative approaches for annotating and reprogramming splicing events will more fully establish the essential contribution of alternative splicing to the biology of cancer and will hopefully provide novel targets and anticancer strategies. Metazoan genes are usually made up of several exons interrupted by introns. The introns are removed from the pre-mRNA by RNA splicing. In conjunction with other maturation steps, such as capping and polyadenylation, the spliced mRNA is then transported to the cytoplasm to be translated into a functional protein. The basic mechanism of splicing requires accurate recognition of each extremity of each intron by the spliceosome. Introns are identified by the binding of U1 snRNP to the 5′ splice site and the U2AF65/U2AF35 complex to the 3′ splice site. Following these interactions, other proteins and snRNPs are recruited to generate the complete spliceosomal complex needed to excise the intron. While many introns are constitutively removed by the spliceosome, other splice junctions are not used systematically, generating the phenomenon of alternative splicing. Alternative splicing is therefore the process by which a single species of pre-mRNA can be matured to produce different mRNA molecules (Fig. 1). Depending on the number and types of alternative splicing events, a pre-mRNA can generate from two to several thousands different mRNAs leading to the production of a corresponding number of proteins. It is now believed that the expression of at least 70 % of human genes is subjected to alternative splicing, implying an enormous contribution to proteomic diversity, and by extension, to the development and the evolution of complex animals. Defects in splicing have been associated with human diseases (Caceres and Kornblihtt, Trends Genet 18(4):186–93, 2002, Cartegni et al., Nat Rev Genet 3(4):285–98, 2002, Pagani and Baralle, Nat Rev Genet 5(5):389–96, 2004), including cancer (Brinkman, Clin Biochem 37(7):584–94, 2004, Venables, Bioessays 28(4):378–86, 2006, Srebrow and Kornblihtt, J Cell Sci 119(Pt 13):2635–2641, 2006, Revil et al., Bull Cancer 93(9):909–919, 2006, Venables, Transworld Res Network, 2006, Pajares et al., Lancet Oncol 8(4):349–57, 2007, Skotheim and Nees, Int J Biochem Cell Biol 39:1432–1449, 2007). Numerous studies have now confirmed the existence of specific differences in the alternative splicing profiles between normal and cancer tissues. Although there are a few cases where specific mutations are the primary cause for these changes, global alterations in alternative splicing in cancer cells may be primarily derived from changes in the expression of RNA-binding proteins that control splice site selection. Overall, these cancer-specific differences in alternative splicing offer an immense potential to improve the diagnosis and the prognosis of cancer. This review will focus on the functional impact of cancer-associated alternative splicing variants, the molecular determinants that alter the splicing decisions in cancer cells, and future therapeutic strategies." @default.
- W7261346 created "2016-06-24" @default.
- W7261346 creator A5008283560 @default.
- W7261346 creator A5029580614 @default.
- W7261346 creator A5034090620 @default.
- W7261346 creator A5048594867 @default.
- W7261346 creator A5060529566 @default.
- W7261346 creator A5067025487 @default.
- W7261346 creator A5080232104 @default.
- W7261346 date "2013-01-01" @default.
- W7261346 modified "2023-10-03" @default.
- W7261346 title "Cancer-Associated Perturbations in Alternative Pre-messenger RNA Splicing" @default.
- W7261346 cites W10879881 @default.
- W7261346 cites W124477826 @default.
- W7261346 cites W1489906504 @default.
- W7261346 cites W1506013368 @default.
- W7261346 cites W1513935046 @default.
- W7261346 cites W1557371306 @default.
- W7261346 cites W1574563999 @default.
- W7261346 cites W1579564476 @default.
- W7261346 cites W1583450756 @default.
- W7261346 cites W1718065612 @default.
- W7261346 cites W1752008811 @default.
- W7261346 cites W1839550896 @default.
- W7261346 cites W1905188415 @default.
- W7261346 cites W1965336678 @default.
- W7261346 cites W1966253756 @default.
- W7261346 cites W1966799726 @default.
- W7261346 cites W1967028954 @default.
- W7261346 cites W1967078513 @default.
- W7261346 cites W1967141802 @default.
- W7261346 cites W1968031498 @default.
- W7261346 cites W1968574304 @default.
- W7261346 cites W1969394448 @default.
- W7261346 cites W1970108031 @default.
- W7261346 cites W1971363517 @default.
- W7261346 cites W1971846931 @default.
- W7261346 cites W1972494704 @default.
- W7261346 cites W1973697733 @default.
- W7261346 cites W1977976322 @default.
- W7261346 cites W1978536299 @default.
- W7261346 cites W1978995691 @default.
- W7261346 cites W1979646962 @default.
- W7261346 cites W1981561019 @default.
- W7261346 cites W1981683590 @default.
- W7261346 cites W1982511505 @default.
- W7261346 cites W1983409515 @default.
- W7261346 cites W1984009890 @default.
- W7261346 cites W1984101180 @default.
- W7261346 cites W1984161837 @default.
- W7261346 cites W1986113553 @default.
- W7261346 cites W1986596784 @default.
- W7261346 cites W1987005646 @default.
- W7261346 cites W1987559776 @default.
- W7261346 cites W1989280667 @default.
- W7261346 cites W1989327230 @default.
- W7261346 cites W1989525457 @default.
- W7261346 cites W1989549717 @default.
- W7261346 cites W1990327942 @default.
- W7261346 cites W1990641349 @default.
- W7261346 cites W1992396964 @default.
- W7261346 cites W1993780097 @default.
- W7261346 cites W1993899393 @default.
- W7261346 cites W1995048208 @default.
- W7261346 cites W1996504780 @default.
- W7261346 cites W1996525505 @default.
- W7261346 cites W1996555072 @default.
- W7261346 cites W1996590031 @default.
- W7261346 cites W1997500900 @default.
- W7261346 cites W1998595844 @default.
- W7261346 cites W1998993030 @default.
- W7261346 cites W1999130532 @default.
- W7261346 cites W1999679614 @default.
- W7261346 cites W1999713325 @default.
- W7261346 cites W1999938006 @default.
- W7261346 cites W2000938936 @default.
- W7261346 cites W2001249546 @default.
- W7261346 cites W2001327335 @default.
- W7261346 cites W2001778920 @default.
- W7261346 cites W2004318896 @default.
- W7261346 cites W2004696473 @default.
- W7261346 cites W2006325063 @default.
- W7261346 cites W2007016148 @default.
- W7261346 cites W2007063723 @default.
- W7261346 cites W2007106796 @default.
- W7261346 cites W2007214163 @default.
- W7261346 cites W2007542500 @default.
- W7261346 cites W2008563023 @default.
- W7261346 cites W2010336934 @default.
- W7261346 cites W2010679556 @default.
- W7261346 cites W2010852376 @default.
- W7261346 cites W2011480379 @default.
- W7261346 cites W2011845259 @default.
- W7261346 cites W2011983871 @default.
- W7261346 cites W2012782745 @default.
- W7261346 cites W2012827002 @default.
- W7261346 cites W2013054537 @default.
- W7261346 cites W2014986799 @default.