Matches in SemOpenAlex for { <https://semopenalex.org/work/W72949901> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W72949901 endingPage "52" @default.
- W72949901 startingPage "49" @default.
- W72949901 abstract "Electrical signals detected along the scalp by an Electroencephalogram (EEG), but that originate from non-cerebral origin are called artifacts. Especially when these artifacts are produced by the human body we talk about biological artifacts. The most common biological artifacts are the electrical signals produced by ocular and heart activity. EEG data is almost always contaminated by such artifacts. The last decade Independent Component Analysis (ICA) has a crucial role in neuroscience and it takes great attention for artifact rejection purposes. According to ICA’s methodology, EEG signals are decomposed to statistical Independent Components (IC) and then an EEG specialist is called to recognize the artifactual ICs. Some of the major limitations of the current approach are that the aforementioned selection is subjective, it demands a high skill EEG operator, it is time consuming and it cannot be applied in online processing. Our study employs machine learning techniques in order to recognize the contaminated ICs with ocular or heart artifacts. More specific 19-channel EEG datasets from 86 normal subjects were decomposed using ICA (19×86=1634 ICs in total). Then three independent observers marked an IC as artifactual if it includes ocular or heart artifacts, otherwise it was marked as normal. Then kurtosis was computed in short segments with 1250 sample points fixed length without overlap for each IC. The mean kurtosis value was computed for each IC and the Naïve Bayes Classifier (NBC) classifier was adopted in order to classify the ICs as artifactual or normal. The results suggest that the NBC has correctly classified 1611/1634 ICs (98.5924 %) so it can be suggested that kurtosis seems to be convenient for the classification of contaminated ICs by ocular or heart artifacts." @default.
- W72949901 created "2016-06-24" @default.
- W72949901 creator A5002532740 @default.
- W72949901 creator A5021462636 @default.
- W72949901 creator A5034072631 @default.
- W72949901 creator A5058926112 @default.
- W72949901 creator A5080698144 @default.
- W72949901 date "2010-01-01" @default.
- W72949901 modified "2023-09-26" @default.
- W72949901 title "A Kurtosis-Based Automatic System Using Naïve Bayesian Classifier to Identify ICA Components Contaminated by EOG or ECG Artifacts" @default.
- W72949901 cites W1989758052 @default.
- W72949901 cites W2024461528 @default.
- W72949901 cites W2049166497 @default.
- W72949901 cites W2079277602 @default.
- W72949901 cites W2105909330 @default.
- W72949901 cites W2108384452 @default.
- W72949901 cites W2153912116 @default.
- W72949901 cites W2172257392 @default.
- W72949901 cites W2261765267 @default.
- W72949901 cites W2437424277 @default.
- W72949901 cites W323457753 @default.
- W72949901 cites W44741455 @default.
- W72949901 doi "https://doi.org/10.1007/978-3-642-13039-7_13" @default.
- W72949901 hasPublicationYear "2010" @default.
- W72949901 type Work @default.
- W72949901 sameAs 72949901 @default.
- W72949901 citedByCount "8" @default.
- W72949901 countsByYear W729499012013 @default.
- W72949901 countsByYear W729499012014 @default.
- W72949901 countsByYear W729499012015 @default.
- W72949901 countsByYear W729499012016 @default.
- W72949901 countsByYear W729499012018 @default.
- W72949901 countsByYear W729499012022 @default.
- W72949901 countsByYear W729499012023 @default.
- W72949901 crossrefType "book-chapter" @default.
- W72949901 hasAuthorship W72949901A5002532740 @default.
- W72949901 hasAuthorship W72949901A5021462636 @default.
- W72949901 hasAuthorship W72949901A5034072631 @default.
- W72949901 hasAuthorship W72949901A5058926112 @default.
- W72949901 hasAuthorship W72949901A5080698144 @default.
- W72949901 hasConcept C105795698 @default.
- W72949901 hasConcept C12267149 @default.
- W72949901 hasConcept C153180895 @default.
- W72949901 hasConcept C154945302 @default.
- W72949901 hasConcept C15744967 @default.
- W72949901 hasConcept C166963901 @default.
- W72949901 hasConcept C169760540 @default.
- W72949901 hasConcept C2779010991 @default.
- W72949901 hasConcept C28490314 @default.
- W72949901 hasConcept C33923547 @default.
- W72949901 hasConcept C41008148 @default.
- W72949901 hasConcept C51432778 @default.
- W72949901 hasConcept C52001869 @default.
- W72949901 hasConcept C522805319 @default.
- W72949901 hasConcept C95623464 @default.
- W72949901 hasConceptScore W72949901C105795698 @default.
- W72949901 hasConceptScore W72949901C12267149 @default.
- W72949901 hasConceptScore W72949901C153180895 @default.
- W72949901 hasConceptScore W72949901C154945302 @default.
- W72949901 hasConceptScore W72949901C15744967 @default.
- W72949901 hasConceptScore W72949901C166963901 @default.
- W72949901 hasConceptScore W72949901C169760540 @default.
- W72949901 hasConceptScore W72949901C2779010991 @default.
- W72949901 hasConceptScore W72949901C28490314 @default.
- W72949901 hasConceptScore W72949901C33923547 @default.
- W72949901 hasConceptScore W72949901C41008148 @default.
- W72949901 hasConceptScore W72949901C51432778 @default.
- W72949901 hasConceptScore W72949901C52001869 @default.
- W72949901 hasConceptScore W72949901C522805319 @default.
- W72949901 hasConceptScore W72949901C95623464 @default.
- W72949901 hasLocation W729499011 @default.
- W72949901 hasOpenAccess W72949901 @default.
- W72949901 hasPrimaryLocation W729499011 @default.
- W72949901 hasRelatedWork W1977152426 @default.
- W72949901 hasRelatedWork W2107517649 @default.
- W72949901 hasRelatedWork W2117041729 @default.
- W72949901 hasRelatedWork W2149078746 @default.
- W72949901 hasRelatedWork W2888574634 @default.
- W72949901 hasRelatedWork W3008296691 @default.
- W72949901 hasRelatedWork W4313203779 @default.
- W72949901 hasRelatedWork W4313280701 @default.
- W72949901 hasRelatedWork W72949901 @default.
- W72949901 hasRelatedWork W94971278 @default.
- W72949901 isParatext "false" @default.
- W72949901 isRetracted "false" @default.
- W72949901 magId "72949901" @default.
- W72949901 workType "book-chapter" @default.