Matches in SemOpenAlex for { <https://semopenalex.org/work/W72967156> ?p ?o ?g. }
- W72967156 endingPage "2008" @default.
- W72967156 startingPage "1997" @default.
- W72967156 abstract "In a recent study, the pattern of gene expression during development of the rat kidney was analyzed using high-density DNA array technology (Stuart RO, Bush KT, Nigam SK, Proc Natl Acad Sci USA 98:5649-5654, 2001). This approach, while shedding light on global patterns of gene expression in the developing kidney, does not provide insight into the contributions of genes that might be part of the morphogenetic program of the ureteric bud (UB) and metanephric mesenchyme (MM), the two tissues that interact closely during nephron formation.We have now used high-density DNA arrays together with a double in vitro transcription (dIVT) approach to examine gene expression patterns in in vitro models for morphogenesis of the rat UB (isolated UB culture) and MM (coculture with embryonic spinal cord) and compared this data with patterns of gene expression in the whole embryonic kidney at different stages of development.The results indicate that different sets of genes are expressed in the UB and MM as morphogenesis occurs. The dIVT data from the in vitro UB and MM culture models was clustered hierarchically with single IVT data from the whole embryonic kidney obtained at different stages of development, and the global patterns of gene expression were remarkably compatible, supporting the validity of the approach. The potential roles of genes whose expression was associated with the individual tissues were examined, and several pathways were identified that could have roles in kidney development. For example, hepatocyte nuclear factor-6 (HNF-6), a transcription factor potentially upstream in a pathway leading to the expression of KSP-cadherin was highly expressed in the UB. Embigin, a cell adhesion molecule important in cell/extracellular matrix (ECM) interactions, was also found in the UB and may serve as a Dolichos biflorus binding protein in the kidney. ADAM10, a disintegrin-metalloprotease involved in Delta-Notch signaling and perhaps Slit-Robo signaling, was also highly expressed in late UB. Celsr-3, a protein, which along with members of the Wnt-frizzled transduction cascade, might be involved in the polarization of the forming nephron, was found to be highly expressed in differentiating MM. DDR2, a member of the discoidin domain receptor family, which is thought to function in the activation of matrix metalloproteinase-2 (MMP-2), was also found to be highly expressed in differentiating MM. It is also interesting to note that almost 10% of the highly expressed genes in both tissues were associated with neuronal growth and/or differentiation.The data presented in this study point to the power of combining in vitro models of kidney development with high-density DNA arrays to identify the genes involved in the morphogenetic process. Clear differences were found between patterns of genes expressed by the UB and MM at different stages of morphogenesis, and many of these were associated with neuronal growth and/or differentiation. Together, the high-density microarray data not only begin to suggest how separate genetic programs in the UB and MM orchestrate the formation of the whole kidney, but also suggest the involvement of heretofore largely unexplored developmental pathways (involving HNF-6, ADAM-10, Celsr-3, DDR2, and other genes) in nephrogenesis." @default.
- W72967156 created "2016-06-24" @default.
- W72967156 creator A5017762059 @default.
- W72967156 creator A5022684460 @default.
- W72967156 creator A5031825923 @default.
- W72967156 date "2003-12-01" @default.
- W72967156 modified "2023-10-18" @default.
- W72967156 title "Changes in gene expression patterns in the ureteric bud and metanephric mesenchyme in models of kidney development" @default.
- W72967156 cites W1928836998 @default.
- W72967156 cites W1931464619 @default.
- W72967156 cites W1965785388 @default.
- W72967156 cites W1967450020 @default.
- W72967156 cites W1968995536 @default.
- W72967156 cites W1969375564 @default.
- W72967156 cites W1972134075 @default.
- W72967156 cites W1977234415 @default.
- W72967156 cites W1982099181 @default.
- W72967156 cites W1987942992 @default.
- W72967156 cites W1988618803 @default.
- W72967156 cites W1992743950 @default.
- W72967156 cites W1994594622 @default.
- W72967156 cites W1994719645 @default.
- W72967156 cites W1998282976 @default.
- W72967156 cites W1999030637 @default.
- W72967156 cites W2004548159 @default.
- W72967156 cites W2007635230 @default.
- W72967156 cites W2010855512 @default.
- W72967156 cites W2012289375 @default.
- W72967156 cites W2015750383 @default.
- W72967156 cites W2022422012 @default.
- W72967156 cites W2026790196 @default.
- W72967156 cites W2026965831 @default.
- W72967156 cites W2029085839 @default.
- W72967156 cites W2036944081 @default.
- W72967156 cites W2039431980 @default.
- W72967156 cites W2044045138 @default.
- W72967156 cites W2046409949 @default.
- W72967156 cites W2053224079 @default.
- W72967156 cites W2068069107 @default.
- W72967156 cites W2074838406 @default.
- W72967156 cites W2088424142 @default.
- W72967156 cites W2093784914 @default.
- W72967156 cites W2118941667 @default.
- W72967156 cites W2120055448 @default.
- W72967156 cites W2124852687 @default.
- W72967156 cites W2136368542 @default.
- W72967156 cites W2141244447 @default.
- W72967156 cites W2151382751 @default.
- W72967156 cites W2160028522 @default.
- W72967156 cites W2166225419 @default.
- W72967156 cites W2168181903 @default.
- W72967156 cites W2168344733 @default.
- W72967156 cites W2415054673 @default.
- W72967156 doi "https://doi.org/10.1046/j.1523-1755.2003.00383.x" @default.
- W72967156 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/14633122" @default.
- W72967156 hasPublicationYear "2003" @default.
- W72967156 type Work @default.
- W72967156 sameAs 72967156 @default.
- W72967156 citedByCount "92" @default.
- W72967156 countsByYear W729671562012 @default.
- W72967156 countsByYear W729671562013 @default.
- W72967156 countsByYear W729671562014 @default.
- W72967156 countsByYear W729671562015 @default.
- W72967156 countsByYear W729671562016 @default.
- W72967156 countsByYear W729671562017 @default.
- W72967156 countsByYear W729671562018 @default.
- W72967156 countsByYear W729671562019 @default.
- W72967156 countsByYear W729671562020 @default.
- W72967156 countsByYear W729671562021 @default.
- W72967156 countsByYear W729671562023 @default.
- W72967156 crossrefType "journal-article" @default.
- W72967156 hasAuthorship W72967156A5017762059 @default.
- W72967156 hasAuthorship W72967156A5022684460 @default.
- W72967156 hasAuthorship W72967156A5031825923 @default.
- W72967156 hasBestOaLocation W729671561 @default.
- W72967156 hasConcept C104317684 @default.
- W72967156 hasConcept C130010870 @default.
- W72967156 hasConcept C145103041 @default.
- W72967156 hasConcept C150194340 @default.
- W72967156 hasConcept C196843134 @default.
- W72967156 hasConcept C2776340970 @default.
- W72967156 hasConcept C2777632694 @default.
- W72967156 hasConcept C2780091579 @default.
- W72967156 hasConcept C40692019 @default.
- W72967156 hasConcept C54355233 @default.
- W72967156 hasConcept C86339819 @default.
- W72967156 hasConcept C86803240 @default.
- W72967156 hasConcept C95444343 @default.
- W72967156 hasConceptScore W72967156C104317684 @default.
- W72967156 hasConceptScore W72967156C130010870 @default.
- W72967156 hasConceptScore W72967156C145103041 @default.
- W72967156 hasConceptScore W72967156C150194340 @default.
- W72967156 hasConceptScore W72967156C196843134 @default.
- W72967156 hasConceptScore W72967156C2776340970 @default.
- W72967156 hasConceptScore W72967156C2777632694 @default.
- W72967156 hasConceptScore W72967156C2780091579 @default.
- W72967156 hasConceptScore W72967156C40692019 @default.
- W72967156 hasConceptScore W72967156C54355233 @default.