Matches in SemOpenAlex for { <https://semopenalex.org/work/W73946134> ?p ?o ?g. }
- W73946134 endingPage "172" @default.
- W73946134 startingPage "151" @default.
- W73946134 abstract "Abstract This paper deals with the enzymes controlling the extent and pattern of methylesterification in pectins within the primary walls of plant cells. It also reviews the consequences of methyl-esterification for gel formation within the cell wall and for the resistance of the wall to mechanical stress. Methyl ester groups are added to pectic galacturonans by pectin methyltransferase (PMT) enzymes during pectin synthesis. Later, within the cell wall, some methyl esters may be removed by pectin methylesterase (PME) enzymes. These enzymes activities were examined in three systems, in each of which growing or dividing cells were compared with inactive cells: suspension-cultured cells of flax, mung bean hypocotyls and poplar cambium. In each system the pectins in the walls of actively growing or dividing cells were more highly methyl-esterified than those of inactive cells. Microsomal PMT activity was characterized throughout the growth cycle of suspension-cultured flax cells. The total PMT activity was maximal during the phase of rapid growth and declined when growth ceased. It was stimulated by exogenous pectins, the optimum type depending on pH. Several basic, neutral and acidic isoforms were solubilised. A number of PME isoforms were present in all three plant systems. In munge bean hypocotyls and poplar stems, neutral isoforms predominated in active cells and basic isoforms in non-growing cells. Three mung bean PMEs were characterised and the most basic one sequenced. It is suggested that as the cells pass beyond the stage of active growth, the pectins are less methyl-esterified at the point when they are exported into the wall and causing stronger bounding of the basic PME isoforms which predominate at that growth stage. The interactions of non-esterified pectic carboxyls with cations control the gelation of pectins and the mechanical properties of the gels. A new ‘cable’ model is presented for the structure of calcium pectate gels at the high concentrations typical of cell walls. The cable model is based on conformational analysis of galacturonans by solid-state NMR, and incorporates not only the accepted 21 helical ‘egg-box’ structures but also 31 helical and intermediate regions. Similar NMR experiments on cell walls revealed still more complex gels with methyl-esterified chain regions participating in both junction zones and inter-junction segments. Because of this structural complexity the stability of cation binding covers a wide range within and between cell walls. The chelating agents most often used to extract pectins have a high enough affinity for calcium ions to remove them completely from cell walls, although imidazole is weaker than the rest. SIMS microscopy of flax hypocotyls showed that calcium ions, bound to low-ester galacturonan segments, were concentrated in the epidermal cell walls particularly at the tricellular junctions. Since the tricellular junctions are stressed by turgor pressure and contain only these pectins, they are a good example of in muro load-bearing by mechanically strong pectate gels. However low-ester pectins with a high affinity for calcium ions also appear to stiffen the Vigna epidermal cell wall longitudinally and may contribute to the cessation of growth as the hypocotyl matures." @default.
- W73946134 created "2016-06-24" @default.
- W73946134 creator A5033786512 @default.
- W73946134 creator A5046605277 @default.
- W73946134 creator A5071227155 @default.
- W73946134 creator A5086961543 @default.
- W73946134 date "1996-01-01" @default.
- W73946134 modified "2023-10-16" @default.
- W73946134 title "Methyl-esterification, de-esterification and gelation of pectins in the primary cell wall" @default.
- W73946134 cites W1531054955 @default.
- W73946134 cites W1548221108 @default.
- W73946134 cites W1573081683 @default.
- W73946134 cites W1902729128 @default.
- W73946134 cites W1916108107 @default.
- W73946134 cites W1963338274 @default.
- W73946134 cites W1967996838 @default.
- W73946134 cites W1972755948 @default.
- W73946134 cites W1976267668 @default.
- W73946134 cites W1987216064 @default.
- W73946134 cites W1988537553 @default.
- W73946134 cites W1989072307 @default.
- W73946134 cites W1989810161 @default.
- W73946134 cites W1992036698 @default.
- W73946134 cites W1992173498 @default.
- W73946134 cites W1993972857 @default.
- W73946134 cites W1994021210 @default.
- W73946134 cites W1994465622 @default.
- W73946134 cites W1994931613 @default.
- W73946134 cites W1994999195 @default.
- W73946134 cites W1996524561 @default.
- W73946134 cites W2001571163 @default.
- W73946134 cites W2002520023 @default.
- W73946134 cites W2008097294 @default.
- W73946134 cites W2009173251 @default.
- W73946134 cites W2013788990 @default.
- W73946134 cites W2026802166 @default.
- W73946134 cites W2041487691 @default.
- W73946134 cites W2042325393 @default.
- W73946134 cites W2044499221 @default.
- W73946134 cites W2047271007 @default.
- W73946134 cites W2049748123 @default.
- W73946134 cites W2049877213 @default.
- W73946134 cites W2054966213 @default.
- W73946134 cites W2061483344 @default.
- W73946134 cites W2062779611 @default.
- W73946134 cites W2066517914 @default.
- W73946134 cites W2072566600 @default.
- W73946134 cites W2075358393 @default.
- W73946134 cites W2082609760 @default.
- W73946134 cites W2086233637 @default.
- W73946134 cites W2087840890 @default.
- W73946134 cites W2088338161 @default.
- W73946134 cites W2094727977 @default.
- W73946134 cites W2113672924 @default.
- W73946134 cites W2126784250 @default.
- W73946134 cites W2128506149 @default.
- W73946134 cites W2131712866 @default.
- W73946134 cites W2133555704 @default.
- W73946134 cites W2139772523 @default.
- W73946134 cites W2169432242 @default.
- W73946134 cites W2178448789 @default.
- W73946134 cites W2206097866 @default.
- W73946134 cites W2249234990 @default.
- W73946134 cites W2326108146 @default.
- W73946134 cites W2341927674 @default.
- W73946134 cites W2419477884 @default.
- W73946134 cites W4238600846 @default.
- W73946134 cites W4239146271 @default.
- W73946134 cites W939617381 @default.
- W73946134 doi "https://doi.org/10.1016/s0921-0423(96)80253-x" @default.
- W73946134 hasPublicationYear "1996" @default.
- W73946134 type Work @default.
- W73946134 sameAs 73946134 @default.
- W73946134 citedByCount "71" @default.
- W73946134 countsByYear W739461342012 @default.
- W73946134 countsByYear W739461342013 @default.
- W73946134 countsByYear W739461342014 @default.
- W73946134 countsByYear W739461342015 @default.
- W73946134 countsByYear W739461342016 @default.
- W73946134 countsByYear W739461342017 @default.
- W73946134 countsByYear W739461342018 @default.
- W73946134 countsByYear W739461342021 @default.
- W73946134 countsByYear W739461342022 @default.
- W73946134 countsByYear W739461342023 @default.
- W73946134 crossrefType "book-chapter" @default.
- W73946134 hasAuthorship W73946134A5033786512 @default.
- W73946134 hasAuthorship W73946134A5046605277 @default.
- W73946134 hasAuthorship W73946134A5071227155 @default.
- W73946134 hasAuthorship W73946134A5086961543 @default.
- W73946134 hasConcept C121332964 @default.
- W73946134 hasConcept C127413603 @default.
- W73946134 hasConcept C1276947 @default.
- W73946134 hasConcept C178790620 @default.
- W73946134 hasConcept C185592680 @default.
- W73946134 hasConcept C2777977315 @default.
- W73946134 hasConcept C42360764 @default.
- W73946134 hasConceptScore W73946134C121332964 @default.
- W73946134 hasConceptScore W73946134C127413603 @default.