Matches in SemOpenAlex for { <https://semopenalex.org/work/W74145736> ?p ?o ?g. }
- W74145736 abstract "To facilitate finding of relevant information in ever-growing multimedia collections, a number of multimedia information retrieval solutions have been proposed over the past years. The essential element of any such solution is the relevance criterion deployed to select or rank the items from a multimedia collection to be presented to the user. Due to the inability of computational approaches to interpret multimedia items and their semantic relations in the same way as humans, the research community has mainly focused on the relevance criteria that can be handled by the modern computers, e.g., finding images or videos depicting a particular object, setting or event. However, in practice the user information needs are often specified at a higher semantic (abstraction) level, which creates a strong need for multimedia information retrieval mechanisms operating with more complex relevance criteria, such as those referring to topicality, aesthetic appeal and sentiment of multimedia items. By considering the practical use-cases associated with different types of multimedia collections, we investigate in this thesis the possibilities of enabling video search and visual summarization based on the relevance criteria defined at a higher semantic level. To start with, we address the problem of video search at the level of semantic theme (general topic, subject matter) in the setting of an unlabeled professional video collection. For this purpose, we propose a retrieval framework based on the query performance prediction principle that makes use of the noisy output of automatic speech recognition and visual concept detection. We demonstrate that valuable information about the semantic theme of a video can be automatically extracted from both its spoken content and the visual channel, which makes the effective retrieval within the proposed framework possible despite the presence of noise and the absence of suitable annotations. The focus of the thesis then moves to the problem of visual summarization in information-rich social media environments. We first investigate the possibilities for improved computing of semantic similarities between images through a multimodal integration of resources ranging from image content and the associated social annotations to the information derived from the analysis of social network in which the images are contextualized. Building on the outcomes of this investigation and inspired by the prospect of using social media in tourist applications, we then propose an approach to automatic creation of visual summaries composed of community-contributed images and depicting various aspects of a selected geographic area. Although the proposed visual summarization approach is proven effective in yielding a good coverage of a targeted geographic area, like most approaches presented in related work, it suffers from a drawback that the user judgment about image suitability for the visual summary is not directly incorporated in the summarization algorithm. This observation inspires probably the most daring research question addressed in the thesis, namely, whether it is possible to learn to automatically identify images that the humans would select if asked to create a visual summary. We give a positive answer to this question and present an image selection approach that makes use of reference visual summaries obtained through crowdsourcing and a versatile image representation that goes beyond the analysis of image content and context to incorporate an analysis of their aesthetic appeal and the sentiment they evoke in the users. Finally, we address the problem of automatic evaluation of the quality of visual summaries and image sets in general, first by using the image metadata only and then based on the human-created references. In conclusion, with this thesis we believe to have pushed the boundaries of relevance criteria that can be deployed in automated multimedia information retrieval systems by demonstrating that the video search and visual summarization can be performed at a higher semantic level. We also show, however, that the effective deployment of advanced relevance criteria requires innovative and unconventional multimedia representation for improved capturing of semantic similarities between multimedia items. Additionally, we demonstrate that properly addressing the user information needs often requires a much more complex mix of relevance criteria than commonly assumed and prove that learning their interplay is possible. Finally, we point out that social media analysis and the emerging technologies such as e.g., crowdsourcing show a great promise in better understanding and automatically modeling the actual user information needs and the way the users interpret and interact with multimedia." @default.
- W74145736 created "2016-06-24" @default.
- W74145736 creator A5075331928 @default.
- W74145736 date "2013-05-06" @default.
- W74145736 modified "2023-09-23" @default.
- W74145736 title "Advancing the Relevance Criteria for Video Search and Visual Summarization" @default.
- W74145736 cites W1526727648 @default.
- W74145736 cites W1558937370 @default.
- W74145736 cites W1580369996 @default.
- W74145736 cites W1584938917 @default.
- W74145736 cites W1591621635 @default.
- W74145736 cites W1598682430 @default.
- W74145736 cites W1599116104 @default.
- W74145736 cites W1607823124 @default.
- W74145736 cites W1854214752 @default.
- W74145736 cites W1963658069 @default.
- W74145736 cites W1972442292 @default.
- W74145736 cites W1974875685 @default.
- W74145736 cites W1975969088 @default.
- W74145736 cites W1978394996 @default.
- W74145736 cites W1989885825 @default.
- W74145736 cites W1990272403 @default.
- W74145736 cites W1991672159 @default.
- W74145736 cites W2001900427 @default.
- W74145736 cites W2003497265 @default.
- W74145736 cites W2009501377 @default.
- W74145736 cites W2015889370 @default.
- W74145736 cites W2020133434 @default.
- W74145736 cites W2020345959 @default.
- W74145736 cites W2023954349 @default.
- W74145736 cites W2024990640 @default.
- W74145736 cites W2026628370 @default.
- W74145736 cites W2030979569 @default.
- W74145736 cites W2033455808 @default.
- W74145736 cites W2040427194 @default.
- W74145736 cites W2042178278 @default.
- W74145736 cites W2044445294 @default.
- W74145736 cites W2047221353 @default.
- W74145736 cites W2048207804 @default.
- W74145736 cites W2048615104 @default.
- W74145736 cites W2051834357 @default.
- W74145736 cites W2078570228 @default.
- W74145736 cites W2081580037 @default.
- W74145736 cites W2083305840 @default.
- W74145736 cites W2090615573 @default.
- W74145736 cites W2090912237 @default.
- W74145736 cites W2096722213 @default.
- W74145736 cites W2097241500 @default.
- W74145736 cites W2097645701 @default.
- W74145736 cites W2097830588 @default.
- W74145736 cites W2098573015 @default.
- W74145736 cites W2101105183 @default.
- W74145736 cites W2102065370 @default.
- W74145736 cites W2103556603 @default.
- W74145736 cites W2106229755 @default.
- W74145736 cites W2108765529 @default.
- W74145736 cites W2110700950 @default.
- W74145736 cites W2111323706 @default.
- W74145736 cites W2112306108 @default.
- W74145736 cites W2114269021 @default.
- W74145736 cites W2115273023 @default.
- W74145736 cites W2119742615 @default.
- W74145736 cites W2130313487 @default.
- W74145736 cites W2131938770 @default.
- W74145736 cites W2132036658 @default.
- W74145736 cites W2134963900 @default.
- W74145736 cites W2137117795 @default.
- W74145736 cites W2138445151 @default.
- W74145736 cites W2144450067 @default.
- W74145736 cites W2148044308 @default.
- W74145736 cites W2148698197 @default.
- W74145736 cites W2151103935 @default.
- W74145736 cites W2154652894 @default.
- W74145736 cites W2155235983 @default.
- W74145736 cites W2165232124 @default.
- W74145736 cites W2245625259 @default.
- W74145736 cites W2403792500 @default.
- W74145736 cites W2435251607 @default.
- W74145736 cites W2901058987 @default.
- W74145736 cites W2916445322 @default.
- W74145736 cites W2916826692 @default.
- W74145736 cites W2981960515 @default.
- W74145736 cites W3122078363 @default.
- W74145736 cites W38739846 @default.
- W74145736 cites W596341774 @default.
- W74145736 doi "https://doi.org/10.4233/uuid:c1b62295-cec4-4279-bf88-becd4e11cbd9" @default.
- W74145736 hasPublicationYear "2013" @default.
- W74145736 type Work @default.
- W74145736 sameAs 74145736 @default.
- W74145736 citedByCount "0" @default.
- W74145736 crossrefType "journal-article" @default.
- W74145736 hasAuthorship W74145736A5075331928 @default.
- W74145736 hasConcept C111472728 @default.
- W74145736 hasConcept C124304363 @default.
- W74145736 hasConcept C136764020 @default.
- W74145736 hasConcept C138885662 @default.
- W74145736 hasConcept C158154518 @default.
- W74145736 hasConcept C170858558 @default.
- W74145736 hasConcept C17744445 @default.
- W74145736 hasConcept C184337299 @default.