Matches in SemOpenAlex for { <https://semopenalex.org/work/W74353556> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W74353556 abstract "The Inverse Polynomial Reconstruction Method (IPRM) has been recently introduced by J.-H. Jung and B. Shizgal in order to remedy the Gibbs phenomenon, see [2], [3], [4], [5]. Their main idea is to reconstruct a given function from its n Fourier coefficients as an algebraic polynomial of degree n− 1. This leads to an n × n system of linear equations, which is solved to find the Legendre coefficients of the polynomial. This approach is motivated by the classical observation that a smooth, function allows an efficient representation through its Legendre series. In particular, if a function has an analytic extension to a larger domain, its Legendre coefficients decay exponentially. In principle, the function can be efficiently reconstructed from its Fourier data indirectly by first computing its Legendre coefficients. Several fundamental aspects of IPRM are still investigated. A rigorous proof of existence of the reconstruction was published only recently by Michel Krebs, see [1]. A major drawback of IPRM is that the condition number of the underlying n×n matrix grows approximately like O(e), which quickly leads to ill-conditioning. For this reason, IPRM fails to converge in the case of a meromorphic function, whose singularities are located sufficiently close to the interval where the function is defined. This happens because the function’s Legendre series does not converge fast enough to mitigate the exponential growth of the condition numbers. To resolve this problem, we propose a modified version of IPRM, which achieves pseudospectral convergence even for restrictions of meromorphic functions. We reconstruct a function as an algebraic polynomial of degree n−1 from the function’s m lowest Fourier coefficients, as long as m > n. We" @default.
- W74353556 created "2016-06-24" @default.
- W74353556 creator A5017822589 @default.
- W74353556 creator A5050615613 @default.
- W74353556 date "2008-01-01" @default.
- W74353556 modified "2023-09-26" @default.
- W74353556 title "Pseudospectral Fourier reconstruction with IPRM" @default.
- W74353556 cites W1966469530 @default.
- W74353556 cites W1985483518 @default.
- W74353556 cites W2000501709 @default.
- W74353556 cites W2061622006 @default.
- W74353556 hasPublicationYear "2008" @default.
- W74353556 type Work @default.
- W74353556 sameAs 74353556 @default.
- W74353556 citedByCount "0" @default.
- W74353556 crossrefType "journal-article" @default.
- W74353556 hasAuthorship W74353556A5017822589 @default.
- W74353556 hasAuthorship W74353556A5050615613 @default.
- W74353556 hasConcept C10628310 @default.
- W74353556 hasConcept C111458787 @default.
- W74353556 hasConcept C123769847 @default.
- W74353556 hasConcept C134306372 @default.
- W74353556 hasConcept C14036430 @default.
- W74353556 hasConcept C151376022 @default.
- W74353556 hasConcept C153262748 @default.
- W74353556 hasConcept C154945302 @default.
- W74353556 hasConcept C196216189 @default.
- W74353556 hasConcept C207864730 @default.
- W74353556 hasConcept C21736991 @default.
- W74353556 hasConcept C28826006 @default.
- W74353556 hasConcept C33923547 @default.
- W74353556 hasConcept C36956377 @default.
- W74353556 hasConcept C41008148 @default.
- W74353556 hasConcept C46286280 @default.
- W74353556 hasConcept C47432892 @default.
- W74353556 hasConcept C78458016 @default.
- W74353556 hasConcept C78540521 @default.
- W74353556 hasConcept C86803240 @default.
- W74353556 hasConcept C90119067 @default.
- W74353556 hasConceptScore W74353556C10628310 @default.
- W74353556 hasConceptScore W74353556C111458787 @default.
- W74353556 hasConceptScore W74353556C123769847 @default.
- W74353556 hasConceptScore W74353556C134306372 @default.
- W74353556 hasConceptScore W74353556C14036430 @default.
- W74353556 hasConceptScore W74353556C151376022 @default.
- W74353556 hasConceptScore W74353556C153262748 @default.
- W74353556 hasConceptScore W74353556C154945302 @default.
- W74353556 hasConceptScore W74353556C196216189 @default.
- W74353556 hasConceptScore W74353556C207864730 @default.
- W74353556 hasConceptScore W74353556C21736991 @default.
- W74353556 hasConceptScore W74353556C28826006 @default.
- W74353556 hasConceptScore W74353556C33923547 @default.
- W74353556 hasConceptScore W74353556C36956377 @default.
- W74353556 hasConceptScore W74353556C41008148 @default.
- W74353556 hasConceptScore W74353556C46286280 @default.
- W74353556 hasConceptScore W74353556C47432892 @default.
- W74353556 hasConceptScore W74353556C78458016 @default.
- W74353556 hasConceptScore W74353556C78540521 @default.
- W74353556 hasConceptScore W74353556C86803240 @default.
- W74353556 hasConceptScore W74353556C90119067 @default.
- W74353556 hasLocation W743535561 @default.
- W74353556 hasOpenAccess W74353556 @default.
- W74353556 hasPrimaryLocation W743535561 @default.
- W74353556 hasRelatedWork W1673331868 @default.
- W74353556 hasRelatedWork W2006920584 @default.
- W74353556 hasRelatedWork W2008143631 @default.
- W74353556 hasRelatedWork W2041509689 @default.
- W74353556 hasRelatedWork W2046014416 @default.
- W74353556 hasRelatedWork W2051841738 @default.
- W74353556 hasRelatedWork W2061187912 @default.
- W74353556 hasRelatedWork W2140556092 @default.
- W74353556 hasRelatedWork W2142279361 @default.
- W74353556 hasRelatedWork W2344038403 @default.
- W74353556 hasRelatedWork W2464287708 @default.
- W74353556 hasRelatedWork W2576681278 @default.
- W74353556 hasRelatedWork W2951165145 @default.
- W74353556 hasRelatedWork W2952915655 @default.
- W74353556 hasRelatedWork W3003861246 @default.
- W74353556 hasRelatedWork W3005143447 @default.
- W74353556 hasRelatedWork W3103255134 @default.
- W74353556 hasRelatedWork W3103795175 @default.
- W74353556 hasRelatedWork W3118737023 @default.
- W74353556 hasRelatedWork W3214488505 @default.
- W74353556 isParatext "false" @default.
- W74353556 isRetracted "false" @default.
- W74353556 magId "74353556" @default.
- W74353556 workType "article" @default.