Matches in SemOpenAlex for { <https://semopenalex.org/work/W744416450> ?p ?o ?g. }
Showing items 1 to 64 of
64
with 100 items per page.
- W744416450 endingPage "894" @default.
- W744416450 startingPage "885" @default.
- W744416450 abstract "The purpose of this study is focused on the development of the effective classification technique using ultra multiband of hyperspectral image. This study suggests the classification technique using canonical correlation analysis, one of multivariate statistical analysis in hyperspectral image classification. High accuracy of classification result is expected for this classification technique as the number of bands increase. This technique is compared with Maximum Likelihood Classification(MLC). The hyperspectral image is the EO1-hyperion image acquired on September 2, 2001, and the number of bands for the experiment were chosen at 30, considering the band scope except the thermal band of Landsat TM. We chose the comparing base map as Ground Truth Data. We evaluate the accuracy by comparing this base map with the classification result image and performing overlay analysis visually. The result showed us that in MLC's case, it can't classify except water, and in case of water, it only classifies big lakes. But Canonical Correlation Classification (CCC) classifies the golf lawn exactly, and it classifies the highway line in the urban area well. In case of water, the ponds that are in golf ground area, the ponds in university, and pools are also classified well. As a result, although the training areas are selected without any trial and error, it was possible to get the exact classification result. Also, the ability to distinguish golf lawn from other vegetations in classification classes, and the ability to classify water was better than MLC technique. Conclusively, this CCC technique for hyperspectral image will be very useful for estimating harvest and detecting surface water. In advance, it will do an important role in the construction of GIS database using the spectral high resolution image, hyperspectral data." @default.
- W744416450 created "2016-06-24" @default.
- W744416450 creator A5046267984 @default.
- W744416450 date "2006-01-01" @default.
- W744416450 modified "2023-09-23" @default.
- W744416450 title "Usefulness of Canonical Correlation Classification Technique in Hyper-spectral Image Classification" @default.
- W744416450 hasPublicationYear "2006" @default.
- W744416450 type Work @default.
- W744416450 sameAs 744416450 @default.
- W744416450 citedByCount "0" @default.
- W744416450 crossrefType "journal-article" @default.
- W744416450 hasAuthorship W744416450A5046267984 @default.
- W744416450 hasConcept C115961682 @default.
- W744416450 hasConcept C146849305 @default.
- W744416450 hasConcept C153180895 @default.
- W744416450 hasConcept C153874254 @default.
- W744416450 hasConcept C154945302 @default.
- W744416450 hasConcept C159078339 @default.
- W744416450 hasConcept C205649164 @default.
- W744416450 hasConcept C33923547 @default.
- W744416450 hasConcept C41008148 @default.
- W744416450 hasConcept C62649853 @default.
- W744416450 hasConcept C75294576 @default.
- W744416450 hasConceptScore W744416450C115961682 @default.
- W744416450 hasConceptScore W744416450C146849305 @default.
- W744416450 hasConceptScore W744416450C153180895 @default.
- W744416450 hasConceptScore W744416450C153874254 @default.
- W744416450 hasConceptScore W744416450C154945302 @default.
- W744416450 hasConceptScore W744416450C159078339 @default.
- W744416450 hasConceptScore W744416450C205649164 @default.
- W744416450 hasConceptScore W744416450C33923547 @default.
- W744416450 hasConceptScore W744416450C41008148 @default.
- W744416450 hasConceptScore W744416450C62649853 @default.
- W744416450 hasConceptScore W744416450C75294576 @default.
- W744416450 hasLocation W7444164501 @default.
- W744416450 hasOpenAccess W744416450 @default.
- W744416450 hasPrimaryLocation W7444164501 @default.
- W744416450 hasRelatedWork W1572212442 @default.
- W744416450 hasRelatedWork W1967256451 @default.
- W744416450 hasRelatedWork W1996623124 @default.
- W744416450 hasRelatedWork W2020663992 @default.
- W744416450 hasRelatedWork W2036729650 @default.
- W744416450 hasRelatedWork W2056851685 @default.
- W744416450 hasRelatedWork W2168609725 @default.
- W744416450 hasRelatedWork W2180196505 @default.
- W744416450 hasRelatedWork W2275438976 @default.
- W744416450 hasRelatedWork W2365337974 @default.
- W744416450 hasRelatedWork W2426974503 @default.
- W744416450 hasRelatedWork W2581721382 @default.
- W744416450 hasRelatedWork W2760235517 @default.
- W744416450 hasRelatedWork W2948545016 @default.
- W744416450 hasRelatedWork W3012401683 @default.
- W744416450 hasRelatedWork W3048142820 @default.
- W744416450 hasRelatedWork W3048506115 @default.
- W744416450 hasRelatedWork W3123275675 @default.
- W744416450 hasRelatedWork W3211376785 @default.
- W744416450 hasRelatedWork W847337008 @default.
- W744416450 hasVolume "26" @default.
- W744416450 isParatext "false" @default.
- W744416450 isRetracted "false" @default.
- W744416450 magId "744416450" @default.
- W744416450 workType "article" @default.