Matches in SemOpenAlex for { <https://semopenalex.org/work/W7447370> ?p ?o ?g. }
- W7447370 endingPage "225" @default.
- W7447370 startingPage "116" @default.
- W7447370 abstract "The present survey is devoted to a general group-theoretic scheme which allows to construct integrable Hamiltonian systems and their solutions in a systematic way. This scheme originates from the works of Kostant [1979a] and Adler [1979] where some special but very instructive examples were studied. Some years later a link was established between this scheme and the so-called classical R-matrix method (Faddeev [1984], Semenov-Tian-Shansky [1983]). One of the advantages of this approach is that it unveils the intimate relationship between the Hamiltonian structure of an integrable system and the specific Riemann problem (or, more generally, factorization problem) that is used to find its solutions. This shows, in particular, that the Hamiltonian structure is completely determined by the Riemann problem. The simplest system which may be studied in this way is the open Toda lattice already described in Chapter 1 by Olshanetsky and Perelomov. (The Toda lattices will be considered here again in a more general framework.) However, the most interesting examples are related to infinite-dimensional Lie algebras. In fact, it can be shown that the solutions of Hamiltonian systems associated with finite-dimensional Lie algebras have a too simple time dependence (roughly speaking, like trigonometric polinomials). By contrast, genuine mechanical problems often lead to more sophisticated (e.g. elliptic or abelian) functions." @default.
- W7447370 created "2016-06-24" @default.
- W7447370 creator A5032240553 @default.
- W7447370 creator A5068719101 @default.
- W7447370 date "1994-01-01" @default.
- W7447370 modified "2023-10-18" @default.
- W7447370 title "Group-Theoretical Methods in the Theory of Finite-Dimensional Integrable Systems" @default.
- W7447370 cites W127566099 @default.
- W7447370 cites W1529287742 @default.
- W7447370 cites W1538134403 @default.
- W7447370 cites W1588860486 @default.
- W7447370 cites W176294426 @default.
- W7447370 cites W1832041404 @default.
- W7447370 cites W1964045414 @default.
- W7447370 cites W1966021537 @default.
- W7447370 cites W1968369152 @default.
- W7447370 cites W1968633572 @default.
- W7447370 cites W1968854545 @default.
- W7447370 cites W1970766718 @default.
- W7447370 cites W1972362863 @default.
- W7447370 cites W1978496481 @default.
- W7447370 cites W1982779826 @default.
- W7447370 cites W1982984473 @default.
- W7447370 cites W1983276213 @default.
- W7447370 cites W1992842006 @default.
- W7447370 cites W1994088960 @default.
- W7447370 cites W1999982415 @default.
- W7447370 cites W2001020033 @default.
- W7447370 cites W2006367649 @default.
- W7447370 cites W2007685040 @default.
- W7447370 cites W2012332090 @default.
- W7447370 cites W2019800791 @default.
- W7447370 cites W2020787186 @default.
- W7447370 cites W2022966562 @default.
- W7447370 cites W2023620134 @default.
- W7447370 cites W2032182512 @default.
- W7447370 cites W2032713492 @default.
- W7447370 cites W2036844011 @default.
- W7447370 cites W2042974949 @default.
- W7447370 cites W2044838555 @default.
- W7447370 cites W2046669744 @default.
- W7447370 cites W2047062138 @default.
- W7447370 cites W2058454883 @default.
- W7447370 cites W2058893615 @default.
- W7447370 cites W2059535919 @default.
- W7447370 cites W2060647731 @default.
- W7447370 cites W2061077624 @default.
- W7447370 cites W2063422954 @default.
- W7447370 cites W2064363643 @default.
- W7447370 cites W2066098206 @default.
- W7447370 cites W2066701400 @default.
- W7447370 cites W2069997291 @default.
- W7447370 cites W2076536265 @default.
- W7447370 cites W2081774062 @default.
- W7447370 cites W2093785095 @default.
- W7447370 cites W2159695001 @default.
- W7447370 cites W2160997297 @default.
- W7447370 cites W2319518625 @default.
- W7447370 cites W3021322720 @default.
- W7447370 cites W4242956400 @default.
- W7447370 cites W4252828368 @default.
- W7447370 cites W4255434966 @default.
- W7447370 cites W85603235 @default.
- W7447370 doi "https://doi.org/10.1007/978-3-662-06796-3_7" @default.
- W7447370 hasPublicationYear "1994" @default.
- W7447370 type Work @default.
- W7447370 sameAs 7447370 @default.
- W7447370 citedByCount "166" @default.
- W7447370 countsByYear W74473702012 @default.
- W7447370 countsByYear W74473702013 @default.
- W7447370 countsByYear W74473702014 @default.
- W7447370 countsByYear W74473702015 @default.
- W7447370 countsByYear W74473702016 @default.
- W7447370 countsByYear W74473702017 @default.
- W7447370 countsByYear W74473702018 @default.
- W7447370 countsByYear W74473702019 @default.
- W7447370 countsByYear W74473702020 @default.
- W7447370 countsByYear W74473702021 @default.
- W7447370 countsByYear W74473702022 @default.
- W7447370 countsByYear W74473702023 @default.
- W7447370 crossrefType "book-chapter" @default.
- W7447370 hasAuthorship W7447370A5032240553 @default.
- W7447370 hasAuthorship W7447370A5068719101 @default.
- W7447370 hasConcept C11413529 @default.
- W7447370 hasConcept C121332964 @default.
- W7447370 hasConcept C121770821 @default.
- W7447370 hasConcept C126255220 @default.
- W7447370 hasConcept C130787639 @default.
- W7447370 hasConcept C134306372 @default.
- W7447370 hasConcept C136119220 @default.
- W7447370 hasConcept C136170076 @default.
- W7447370 hasConcept C187834632 @default.
- W7447370 hasConcept C187915474 @default.
- W7447370 hasConcept C199479865 @default.
- W7447370 hasConcept C200741047 @default.
- W7447370 hasConcept C202444582 @default.
- W7447370 hasConcept C24890656 @default.
- W7447370 hasConcept C2781204021 @default.