Matches in SemOpenAlex for { <https://semopenalex.org/work/W745082716> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W745082716 abstract "markdownabstract__Abstract__Atherosclerosis of the carotid artery is a main cause of ischemic cerebrovascular events. There is evidence that the composition of the vessel wall is more strongly related to plaque vulnerability and subsequent events than luminal stenosis, which is currently used for risk stratification in clinical practice. Noninvasive imaging can characterize the composition of the vessel wall. In order to incorporate measures of plaque composition into clinical practice, accurate and robust image segmentation methods are required. This thesis describes the development and validation of image analysis techniques that aim at the automated characterization of the carotid atherosclerotic vessel wall. The first part of this thesis makes use of a dataset in which ex vivo and in vivo MRI and CT, and annotated histology sections are available and have been spatially aligned. We firstly perform segmentation of plaque components in ex vivo MRI. Voxel classifiers are trained on a ground truth of registered histology and μCT images. We show the importance of different groups of features: intensities, Gaussian filters and wall distances, and use these features in subsequent work on in vivo data. Here we address the problems that arise in training and evaluation of segmentation methods when misregistration between histology and in vivo data occurs. Still, we show that accurate segmentation of the lipid-rich necrotic core, calcification and fibrous tissue is possible when MRI and CTA are combined, and linear discriminant analysis is performed after rejecting outliers from the training set. Finally, in this first part of the thesis we develop a method for automatic segmentation of different plaque components from histology sections, to make the use of histology for training and evaluation more feasible and less time-consuming.Subsequently we perform plaque component segmentation from in vivo MRI only, and address the fact that MRI datasets acquired in difference centers using different hardware varies considerably in appearance. Firstly, we show that segmentation of lipid, intraplaque hemorrhage, calcification, and fibrous tissue can be performed with similar accuracy as the variation between observers on MRI data from two different centers. Secondly, we show that the accuracy decreases when a method developed on data from one center is used to apply to data from the other center. We propose two methods by which we improve this transferability of segmentation methods: non-linear feature scaling, and transfer learning in which we add only a few annotated slices from the ‘new’ center to the training data.Lastly, we perform a study on texture analysis of carotid artery plaques in 3D ultrasound images. From a large set of texture parameters we obtain the strongest parameters to form a ‘risk indicator’. In a longitudinal study with 3D ultrasound imaging at two time points, we show that change in texture is a stronger predictor of vascular events than previously used parameters for risk stratification, and that using texture in addition to those parameters improves risk stratification in patients with carotid artery disease." @default.
- W745082716 created "2016-06-24" @default.
- W745082716 creator A5051350171 @default.
- W745082716 date "2014-06-17" @default.
- W745082716 modified "2023-09-22" @default.
- W745082716 title "Multimodal Image Analysis for Carotid Artery Plaque Characterization" @default.
- W745082716 hasPublicationYear "2014" @default.
- W745082716 type Work @default.
- W745082716 sameAs 745082716 @default.
- W745082716 citedByCount "0" @default.
- W745082716 crossrefType "journal-article" @default.
- W745082716 hasAuthorship W745082716A5051350171 @default.
- W745082716 hasConcept C124504099 @default.
- W745082716 hasConcept C126838900 @default.
- W745082716 hasConcept C142724271 @default.
- W745082716 hasConcept C146849305 @default.
- W745082716 hasConcept C150903083 @default.
- W745082716 hasConcept C153180895 @default.
- W745082716 hasConcept C154945302 @default.
- W745082716 hasConcept C207001950 @default.
- W745082716 hasConcept C26291073 @default.
- W745082716 hasConcept C2778710248 @default.
- W745082716 hasConcept C2779179121 @default.
- W745082716 hasConcept C31972630 @default.
- W745082716 hasConcept C41008148 @default.
- W745082716 hasConcept C54170458 @default.
- W745082716 hasConcept C58489278 @default.
- W745082716 hasConcept C71924100 @default.
- W745082716 hasConcept C86803240 @default.
- W745082716 hasConcept C89600930 @default.
- W745082716 hasConceptScore W745082716C124504099 @default.
- W745082716 hasConceptScore W745082716C126838900 @default.
- W745082716 hasConceptScore W745082716C142724271 @default.
- W745082716 hasConceptScore W745082716C146849305 @default.
- W745082716 hasConceptScore W745082716C150903083 @default.
- W745082716 hasConceptScore W745082716C153180895 @default.
- W745082716 hasConceptScore W745082716C154945302 @default.
- W745082716 hasConceptScore W745082716C207001950 @default.
- W745082716 hasConceptScore W745082716C26291073 @default.
- W745082716 hasConceptScore W745082716C2778710248 @default.
- W745082716 hasConceptScore W745082716C2779179121 @default.
- W745082716 hasConceptScore W745082716C31972630 @default.
- W745082716 hasConceptScore W745082716C41008148 @default.
- W745082716 hasConceptScore W745082716C54170458 @default.
- W745082716 hasConceptScore W745082716C58489278 @default.
- W745082716 hasConceptScore W745082716C71924100 @default.
- W745082716 hasConceptScore W745082716C86803240 @default.
- W745082716 hasConceptScore W745082716C89600930 @default.
- W745082716 hasLocation W7450827161 @default.
- W745082716 hasOpenAccess W745082716 @default.
- W745082716 hasPrimaryLocation W7450827161 @default.
- W745082716 hasRelatedWork W125186575 @default.
- W745082716 hasRelatedWork W1992213841 @default.
- W745082716 hasRelatedWork W2022427932 @default.
- W745082716 hasRelatedWork W2051213794 @default.
- W745082716 hasRelatedWork W2054873741 @default.
- W745082716 hasRelatedWork W2061131515 @default.
- W745082716 hasRelatedWork W2099564498 @default.
- W745082716 hasRelatedWork W2111400785 @default.
- W745082716 hasRelatedWork W2111710136 @default.
- W745082716 hasRelatedWork W2126560515 @default.
- W745082716 hasRelatedWork W2128628333 @default.
- W745082716 hasRelatedWork W2171630107 @default.
- W745082716 hasRelatedWork W2209195145 @default.
- W745082716 hasRelatedWork W2588740126 @default.
- W745082716 hasRelatedWork W2966272446 @default.
- W745082716 hasRelatedWork W3022228670 @default.
- W745082716 hasRelatedWork W3115719565 @default.
- W745082716 hasRelatedWork W3129350331 @default.
- W745082716 hasRelatedWork W3182078573 @default.
- W745082716 hasRelatedWork W2184228035 @default.
- W745082716 isParatext "false" @default.
- W745082716 isRetracted "false" @default.
- W745082716 magId "745082716" @default.
- W745082716 workType "article" @default.