Matches in SemOpenAlex for { <https://semopenalex.org/work/W746177311> ?p ?o ?g. }
- W746177311 abstract "One problem of special interest both in industry and the engineering community is that of using the enormous amounts of data routinely generated and recorded in efficient process monitoring and control strategies. In statistical terms this is related to identifying those variables which exhibit unwanted or unusual process variability so that remedial action can be taken. To this end, a common approach in the literature is to reduce the problem dimensionality by using latent variable models. Customarily, the latent variables are a function of all of the original variables and monitoring is carried out in the reduced space. Within this context, this thesis explores the development of models in which the latent factors are a function of a subset, only, of the original observations. By doing that, the advantages of monitoring in a reduced subspace are retained but there there are also additional gains in model interpretability. The idea arises from the sparse representation of the mapping matrix between latent and original variables in a linear factor analysis (FA) model. An extension of principal component analysis (PCA) to monitor nonlinear systems is proposed by using a a Gaussian Process Latent Variable model [Lawrence, 2005], GPLVM, as a starting point. Its application in a process control problem is also introduced. Using a Gaussian process, GP , as the backbone, we define a Gaussian Process Functional Factor Analysis model which maps subsets of the latent variables to the observed data-space; a study of the model asymptotic properties is given. Several parameter inference methods as well as a model selection procedure via penalty functions are also proposed. There are several scientific disciplines involved in the problem at hand. Chemical engineers refer to it as a sub-field of Process Control known asMultivariate Statistical Process Control. It is also an area of tremendous success in process Chemometrics where it has grown very rapidly over the last two decades. In Statistics, it touches the topics of latent variable models and variable selection methods. And within the Machine Learning community is classified as an Unsupervised Learning problem." @default.
- W746177311 created "2016-06-24" @default.
- W746177311 creator A5058543364 @default.
- W746177311 date "2012-01-01" @default.
- W746177311 modified "2023-09-23" @default.
- W746177311 title "Gaussian process models for process monitoring and control" @default.
- W746177311 cites W128740895 @default.
- W746177311 cites W131998157 @default.
- W746177311 cites W1494853941 @default.
- W746177311 cites W150175414 @default.
- W746177311 cites W1506806321 @default.
- W746177311 cites W1510073064 @default.
- W746177311 cites W1536884591 @default.
- W746177311 cites W1544324307 @default.
- W746177311 cites W1550570395 @default.
- W746177311 cites W1554944419 @default.
- W746177311 cites W1567512734 @default.
- W746177311 cites W1571998446 @default.
- W746177311 cites W1576256388 @default.
- W746177311 cites W1599057079 @default.
- W746177311 cites W1738124305 @default.
- W746177311 cites W1746819321 @default.
- W746177311 cites W1905898145 @default.
- W746177311 cites W1966382716 @default.
- W746177311 cites W1978994389 @default.
- W746177311 cites W1985912981 @default.
- W746177311 cites W1989520638 @default.
- W746177311 cites W1994103660 @default.
- W746177311 cites W1994505190 @default.
- W746177311 cites W1995235836 @default.
- W746177311 cites W1997320786 @default.
- W746177311 cites W1999935041 @default.
- W746177311 cites W2005051528 @default.
- W746177311 cites W2005860934 @default.
- W746177311 cites W2015436473 @default.
- W746177311 cites W2016229608 @default.
- W746177311 cites W2020737422 @default.
- W746177311 cites W2020925091 @default.
- W746177311 cites W2034108143 @default.
- W746177311 cites W2034396691 @default.
- W746177311 cites W2043399131 @default.
- W746177311 cites W2047028564 @default.
- W746177311 cites W2051812123 @default.
- W746177311 cites W2057130336 @default.
- W746177311 cites W2057283314 @default.
- W746177311 cites W2058015161 @default.
- W746177311 cites W2059334100 @default.
- W746177311 cites W2059995865 @default.
- W746177311 cites W2060269779 @default.
- W746177311 cites W2063033763 @default.
- W746177311 cites W2066306397 @default.
- W746177311 cites W2066551872 @default.
- W746177311 cites W2068561554 @default.
- W746177311 cites W2071662362 @default.
- W746177311 cites W2074058676 @default.
- W746177311 cites W2074682976 @default.
- W746177311 cites W2074970237 @default.
- W746177311 cites W2076025348 @default.
- W746177311 cites W2076175112 @default.
- W746177311 cites W2077791644 @default.
- W746177311 cites W2079441011 @default.
- W746177311 cites W2079705549 @default.
- W746177311 cites W2079775628 @default.
- W746177311 cites W2088814069 @default.
- W746177311 cites W2091031656 @default.
- W746177311 cites W2093479200 @default.
- W746177311 cites W2119400998 @default.
- W746177311 cites W2122825543 @default.
- W746177311 cites W2125027820 @default.
- W746177311 cites W2125334673 @default.
- W746177311 cites W2135046866 @default.
- W746177311 cites W2136111243 @default.
- W746177311 cites W2137956165 @default.
- W746177311 cites W2140095548 @default.
- W746177311 cites W2142886904 @default.
- W746177311 cites W2152820192 @default.
- W746177311 cites W2157826563 @default.
- W746177311 cites W2161767008 @default.
- W746177311 cites W2166042538 @default.
- W746177311 cites W2169347809 @default.
- W746177311 cites W2444456673 @default.
- W746177311 cites W2475054545 @default.
- W746177311 cites W2795739367 @default.
- W746177311 cites W2904816695 @default.
- W746177311 cites W2912889105 @default.
- W746177311 cites W3029645440 @default.
- W746177311 cites W3099514962 @default.
- W746177311 cites W3121158818 @default.
- W746177311 cites W998010897 @default.
- W746177311 cites W14377099 @default.
- W746177311 hasPublicationYear "2012" @default.
- W746177311 type Work @default.
- W746177311 sameAs 746177311 @default.
- W746177311 citedByCount "0" @default.
- W746177311 crossrefType "dissertation" @default.
- W746177311 hasAuthorship W746177311A5058543364 @default.
- W746177311 hasConcept C111919701 @default.
- W746177311 hasConcept C113644684 @default.
- W746177311 hasConcept C119857082 @default.
- W746177311 hasConcept C121332964 @default.