Matches in SemOpenAlex for { <https://semopenalex.org/work/W747226871> ?p ?o ?g. }
- W747226871 abstract "In Berger’s classification of Riemannian holonomy groups there are several infinite families and two exceptional cases: the groups Spin(7) and G2. This thesis is mainly concerned with 7-dimensional manifolds with holonomy G2. A metric with holonomy contained in G2 can be defined in terms of a torsion-free G2-structure, and a G2-manifold is a 7-dimensional manifold equipped with such a structure. There are two known constructions of compact manifolds with holonomy exactly G2. Joyce found examples by resolving singularities of quotients of flat tori. Later Kovalev found different examples by gluing pairs of exponentially asymptotically cylindrical (EAC) G2-manifolds (not necessarily with holonomy exactlyG2) whose cylinders match. The result of this gluing construction can be regarded as a generalised connected sum of the EAC components, and has a long approximately cylindrical neck region. We consider the deformation theory of EAC G2-manifolds and show, generalising from the compact case, that there is a smooth moduli space of torsion-free EACG2-structures. As an application we study the deformations of the gluing construction for compact G2-manifolds, and find that the glued torsion-free G2-structures form an open subset of the moduli space on the compact connected sum. For a fixed pair of matching EAC G2-manifolds the gluing construction provides a path of torsion-free G2-structures on the connected sum with increasing neck length. Intuitively this defines a boundary point for the moduli space on the connected sum, representing a way to ‘pull apart’ the compact G2-manifold into a pair of EAC components. We use the deformation theory to make this more precise. We then consider the problem whether compact G2-manifolds constructed by Joyce’s method can be deformed to the result of a gluing construction. By proving a result for resolving singularities of EAC G2-manifolds we show that some of Joyce’s examples can be pulled apart in the above sense. Some of the EAC G2-manifolds that arise this way satisfy a necessary and sufficient topological condition for having holonomy exactly G2. We prove also deformation results for EAC Spin(7)-manifolds, i.e. dimension 8 manifolds with holonomy contained in Spin(7). On such manifolds there is a smooth moduli space of torsion-free EAC Spin(7)-structures. Generalising a result of Wang for compact manifolds we show that for EAC G2-manifolds and Spin(7)-manifolds the special holonomy metrics form an open subset of the set of Ricci-flat metrics." @default.
- W747226871 created "2016-06-24" @default.
- W747226871 creator A5052382587 @default.
- W747226871 date "2008-10-14" @default.
- W747226871 modified "2023-09-25" @default.
- W747226871 title "Deformations and gluing of asymptotically cylindrical manifolds with exceptional holonomy" @default.
- W747226871 cites W130107077 @default.
- W747226871 cites W1480755397 @default.
- W747226871 cites W1482020180 @default.
- W747226871 cites W1490780103 @default.
- W747226871 cites W1502181184 @default.
- W747226871 cites W1507925093 @default.
- W747226871 cites W1513493244 @default.
- W747226871 cites W1528815749 @default.
- W747226871 cites W1552551180 @default.
- W747226871 cites W1560094496 @default.
- W747226871 cites W1592686709 @default.
- W747226871 cites W1604436244 @default.
- W747226871 cites W1641073798 @default.
- W747226871 cites W1868494963 @default.
- W747226871 cites W1941650215 @default.
- W747226871 cites W1963526424 @default.
- W747226871 cites W1984804105 @default.
- W747226871 cites W1985846302 @default.
- W747226871 cites W1991877400 @default.
- W747226871 cites W2011003092 @default.
- W747226871 cites W2013273872 @default.
- W747226871 cites W2023538357 @default.
- W747226871 cites W2025291128 @default.
- W747226871 cites W2032868343 @default.
- W747226871 cites W2068332455 @default.
- W747226871 cites W2068500992 @default.
- W747226871 cites W2072050051 @default.
- W747226871 cites W2078033670 @default.
- W747226871 cites W2091655618 @default.
- W747226871 cites W2102791955 @default.
- W747226871 cites W2122542302 @default.
- W747226871 cites W2127494126 @default.
- W747226871 cites W2159231972 @default.
- W747226871 cites W2164994519 @default.
- W747226871 cites W218489606 @default.
- W747226871 cites W2320471620 @default.
- W747226871 cites W2324977829 @default.
- W747226871 cites W2476344385 @default.
- W747226871 cites W2502735413 @default.
- W747226871 cites W2571846131 @default.
- W747226871 cites W2580882585 @default.
- W747226871 cites W2799015047 @default.
- W747226871 cites W2951209364 @default.
- W747226871 cites W2963001356 @default.
- W747226871 cites W3098785215 @default.
- W747226871 cites W3187477437 @default.
- W747226871 cites W572671484 @default.
- W747226871 cites W649989581 @default.
- W747226871 cites W19964404 @default.
- W747226871 doi "https://doi.org/10.17863/cam.16204" @default.
- W747226871 hasPublicationYear "2008" @default.
- W747226871 type Work @default.
- W747226871 sameAs 747226871 @default.
- W747226871 citedByCount "13" @default.
- W747226871 countsByYear W7472268712012 @default.
- W747226871 countsByYear W7472268712013 @default.
- W747226871 countsByYear W7472268712017 @default.
- W747226871 countsByYear W7472268712018 @default.
- W747226871 countsByYear W7472268712020 @default.
- W747226871 countsByYear W7472268712021 @default.
- W747226871 crossrefType "dissertation" @default.
- W747226871 hasAuthorship W747226871A5052382587 @default.
- W747226871 hasConcept C106953101 @default.
- W747226871 hasConcept C12520029 @default.
- W747226871 hasConcept C127413603 @default.
- W747226871 hasConcept C134306372 @default.
- W747226871 hasConcept C139941754 @default.
- W747226871 hasConcept C141071460 @default.
- W747226871 hasConcept C165818556 @default.
- W747226871 hasConcept C167204820 @default.
- W747226871 hasConcept C181478350 @default.
- W747226871 hasConcept C195065555 @default.
- W747226871 hasConcept C202444582 @default.
- W747226871 hasConcept C203934109 @default.
- W747226871 hasConcept C2524010 @default.
- W747226871 hasConcept C32518243 @default.
- W747226871 hasConcept C33923547 @default.
- W747226871 hasConcept C50955798 @default.
- W747226871 hasConcept C529865628 @default.
- W747226871 hasConcept C71924100 @default.
- W747226871 hasConcept C73373263 @default.
- W747226871 hasConcept C77461463 @default.
- W747226871 hasConcept C78519656 @default.
- W747226871 hasConceptScore W747226871C106953101 @default.
- W747226871 hasConceptScore W747226871C12520029 @default.
- W747226871 hasConceptScore W747226871C127413603 @default.
- W747226871 hasConceptScore W747226871C134306372 @default.
- W747226871 hasConceptScore W747226871C139941754 @default.
- W747226871 hasConceptScore W747226871C141071460 @default.
- W747226871 hasConceptScore W747226871C165818556 @default.
- W747226871 hasConceptScore W747226871C167204820 @default.
- W747226871 hasConceptScore W747226871C181478350 @default.
- W747226871 hasConceptScore W747226871C195065555 @default.
- W747226871 hasConceptScore W747226871C202444582 @default.