Matches in SemOpenAlex for { <https://semopenalex.org/work/W747753399> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W747753399 endingPage "1385" @default.
- W747753399 startingPage "1369" @default.
- W747753399 abstract "Abstract Micro heat pipes have been used to cool microelectronic devices, but their heat transfer coefficients are low compared with those of conventional heat pipes. We model heat and mass transfer in triangular, square, hexagonal, and rectangular micro heat pipes under small imposed temperature differences. A micro heat pipe is a closed microchannel filled with a wetting liquid and a long vapor bubble. When a temperature difference is applied across a micro heat pipe, the equilibrium vapor pressure at the hot end is higher than that at the cold end, and the difference drives a vapor flow. As the vapor moves, the vapor pressure at the hot end drops below the saturation pressure. This pressure drop induces continuous evaporation from the interface. We solve for the evaporation rate in the limit the evaporation number E → ∞ , and find that the liquid evaporates mainly in a boundary layer at the contact line. An analytic solution is obtained for the leading-order evaporation rate. Since the pipe is slender and the imposed temperature difference small, the heat and mass transfer along the pipe is skew-symmetric about the mid point of the pipe. Hence, we only need to focus on the heated half of the pipe. Furthermore, because the pipe and bubble are long, the coupled vapor and liquid flows along the pipe are predominantly uni-directional, and the heat transfer by vapor flow and by conduction in the liquid and wall are essentially one-dimensional. Thus, we find analytic solutions for the temperature profile and vapor and liquid pressure distributions along the pipe. Two dimensionless numbers emerge from the momentum and energy equations: the heat-pipe number, H , which is the ratio of heat transfer by vapor flow to conductive heat transfer in the liquid and pipe wall, and the evaporation exponent S , which controls the evaporation gradient along the pipe. In the limit H → 0 or S → 0 , conduction in the liquid and wall dominates. When H → ∞ and S → ∞ , vapor-flow heat transfer dominates and a thermal boundary layer appears at the hot end, the thickness of which scales as S - 1 L , where L is the half-length of the pipe. A similar boundary layer exists at the cold end. Outside the boundary layers, the temperature is uniform. These regions correspond to the evaporating, adiabatic, and condensing regions commonly observed in conventional heat pipes and are absent in most micro heat pipes leading to their low heat transfer coefficients. We also find a dimensionless optimal pipe length S m = S m H for maximum evaporative heat transfer. Thus, our model suggests that micro heat pipes should be designed with H ≫ 1 and S = S m . We calculate H and S for four published micro-heat-pipe experiments, and find encouraging support for our design criterion." @default.
- W747753399 created "2016-06-24" @default.
- W747753399 creator A5012848408 @default.
- W747753399 creator A5039968612 @default.
- W747753399 date "2015-10-01" @default.
- W747753399 modified "2023-10-16" @default.
- W747753399 title "Heat and mass transfer in polygonal micro heat pipes under small imposed temperature differences" @default.
- W747753399 cites W1965554992 @default.
- W747753399 cites W1967004426 @default.
- W747753399 cites W1968823667 @default.
- W747753399 cites W1977066547 @default.
- W747753399 cites W1986027031 @default.
- W747753399 cites W1988031583 @default.
- W747753399 cites W1995944272 @default.
- W747753399 cites W1998315704 @default.
- W747753399 cites W2006680197 @default.
- W747753399 cites W2008295976 @default.
- W747753399 cites W2013483084 @default.
- W747753399 cites W2017404778 @default.
- W747753399 cites W2025777747 @default.
- W747753399 cites W2025873983 @default.
- W747753399 cites W2037231566 @default.
- W747753399 cites W2040859190 @default.
- W747753399 cites W2055734556 @default.
- W747753399 cites W2056037597 @default.
- W747753399 cites W2058214359 @default.
- W747753399 cites W2059735212 @default.
- W747753399 cites W2062778161 @default.
- W747753399 cites W2062838175 @default.
- W747753399 cites W2063223210 @default.
- W747753399 cites W2063447770 @default.
- W747753399 cites W2066912793 @default.
- W747753399 cites W2067329356 @default.
- W747753399 cites W2076103026 @default.
- W747753399 cites W2092487463 @default.
- W747753399 cites W2093932442 @default.
- W747753399 cites W2094879072 @default.
- W747753399 cites W2109514885 @default.
- W747753399 cites W2113579364 @default.
- W747753399 cites W2118228564 @default.
- W747753399 cites W2118561767 @default.
- W747753399 cites W2157444196 @default.
- W747753399 cites W2157457795 @default.
- W747753399 cites W2170353677 @default.
- W747753399 cites W2321674872 @default.
- W747753399 doi "https://doi.org/10.1016/j.ijheatmasstransfer.2015.06.016" @default.
- W747753399 hasPublicationYear "2015" @default.
- W747753399 type Work @default.
- W747753399 sameAs 747753399 @default.
- W747753399 citedByCount "6" @default.
- W747753399 countsByYear W7477533992017 @default.
- W747753399 countsByYear W7477533992018 @default.
- W747753399 countsByYear W7477533992023 @default.
- W747753399 crossrefType "journal-article" @default.
- W747753399 hasAuthorship W747753399A5012848408 @default.
- W747753399 hasAuthorship W747753399A5039968612 @default.
- W747753399 hasConcept C121332964 @default.
- W747753399 hasConcept C192562407 @default.
- W747753399 hasConcept C50517652 @default.
- W747753399 hasConcept C51038369 @default.
- W747753399 hasConcept C57879066 @default.
- W747753399 hasConcept C97355855 @default.
- W747753399 hasConceptScore W747753399C121332964 @default.
- W747753399 hasConceptScore W747753399C192562407 @default.
- W747753399 hasConceptScore W747753399C50517652 @default.
- W747753399 hasConceptScore W747753399C51038369 @default.
- W747753399 hasConceptScore W747753399C57879066 @default.
- W747753399 hasConceptScore W747753399C97355855 @default.
- W747753399 hasLocation W7477533991 @default.
- W747753399 hasOpenAccess W747753399 @default.
- W747753399 hasPrimaryLocation W7477533991 @default.
- W747753399 hasRelatedWork W2043601102 @default.
- W747753399 hasRelatedWork W2052017678 @default.
- W747753399 hasRelatedWork W2062119255 @default.
- W747753399 hasRelatedWork W2145401712 @default.
- W747753399 hasRelatedWork W2525210864 @default.
- W747753399 hasRelatedWork W3105142409 @default.
- W747753399 hasRelatedWork W3143173805 @default.
- W747753399 hasRelatedWork W4205616187 @default.
- W747753399 hasRelatedWork W4291302563 @default.
- W747753399 hasRelatedWork W647420497 @default.
- W747753399 hasVolume "89" @default.
- W747753399 isParatext "false" @default.
- W747753399 isRetracted "false" @default.
- W747753399 magId "747753399" @default.
- W747753399 workType "article" @default.