Matches in SemOpenAlex for { <https://semopenalex.org/work/W749200212> ?p ?o ?g. }
- W749200212 endingPage "103" @default.
- W749200212 startingPage "89" @default.
- W749200212 abstract "Subset Simulation is an adaptive simulation method that efficiently solves structural reliability problems with many random variables. The method requires sampling from conditional distributions, which is achieved through Markov Chain Monte Carlo (MCMC) algorithms. This paper discusses different MCMC algorithms proposed for Subset Simulation and introduces a novel approach for MCMC sampling in the standard normal space. Two variants of the algorithm are proposed: a basic variant, which is simpler than existing algorithms with equal accuracy and efficiency, and a more efficient variant with adaptive scaling. It is demonstrated that the proposed algorithm improves the accuracy of Subset Simulation, without the need for additional model evaluations." @default.
- W749200212 created "2016-06-24" @default.
- W749200212 creator A5031782819 @default.
- W749200212 creator A5039381769 @default.
- W749200212 creator A5080387253 @default.
- W749200212 creator A5088644023 @default.
- W749200212 date "2015-07-01" @default.
- W749200212 modified "2023-10-18" @default.
- W749200212 title "MCMC algorithms for Subset Simulation" @default.
- W749200212 cites W1965777485 @default.
- W749200212 cites W1966017656 @default.
- W749200212 cites W1968177355 @default.
- W749200212 cites W1976121126 @default.
- W749200212 cites W1977902821 @default.
- W749200212 cites W1980144607 @default.
- W749200212 cites W1980587057 @default.
- W749200212 cites W1985112216 @default.
- W749200212 cites W1988684120 @default.
- W749200212 cites W1995780830 @default.
- W749200212 cites W1999091229 @default.
- W749200212 cites W2003732947 @default.
- W749200212 cites W2008703230 @default.
- W749200212 cites W2009471582 @default.
- W749200212 cites W2013392851 @default.
- W749200212 cites W2015399216 @default.
- W749200212 cites W2017488093 @default.
- W749200212 cites W2019651755 @default.
- W749200212 cites W2023678279 @default.
- W749200212 cites W2025793976 @default.
- W749200212 cites W2026749015 @default.
- W749200212 cites W2027968505 @default.
- W749200212 cites W2028147833 @default.
- W749200212 cites W2029164135 @default.
- W749200212 cites W2030911724 @default.
- W749200212 cites W2043166323 @default.
- W749200212 cites W2051159254 @default.
- W749200212 cites W2056760934 @default.
- W749200212 cites W2057804258 @default.
- W749200212 cites W2059147320 @default.
- W749200212 cites W2063066676 @default.
- W749200212 cites W2075090910 @default.
- W749200212 cites W2078765362 @default.
- W749200212 cites W2080577297 @default.
- W749200212 cites W2080735494 @default.
- W749200212 cites W2097235968 @default.
- W749200212 cites W2135973421 @default.
- W749200212 cites W2136796925 @default.
- W749200212 cites W2138309709 @default.
- W749200212 cites W2147357149 @default.
- W749200212 cites W2326847038 @default.
- W749200212 doi "https://doi.org/10.1016/j.probengmech.2015.06.006" @default.
- W749200212 hasPublicationYear "2015" @default.
- W749200212 type Work @default.
- W749200212 sameAs 749200212 @default.
- W749200212 citedByCount "249" @default.
- W749200212 countsByYear W7492002122014 @default.
- W749200212 countsByYear W7492002122015 @default.
- W749200212 countsByYear W7492002122016 @default.
- W749200212 countsByYear W7492002122017 @default.
- W749200212 countsByYear W7492002122018 @default.
- W749200212 countsByYear W7492002122019 @default.
- W749200212 countsByYear W7492002122020 @default.
- W749200212 countsByYear W7492002122021 @default.
- W749200212 countsByYear W7492002122022 @default.
- W749200212 countsByYear W7492002122023 @default.
- W749200212 crossrefType "journal-article" @default.
- W749200212 hasAuthorship W749200212A5031782819 @default.
- W749200212 hasAuthorship W749200212A5039381769 @default.
- W749200212 hasAuthorship W749200212A5080387253 @default.
- W749200212 hasAuthorship W749200212A5088644023 @default.
- W749200212 hasConcept C105795698 @default.
- W749200212 hasConcept C106131492 @default.
- W749200212 hasConcept C111350023 @default.
- W749200212 hasConcept C11413529 @default.
- W749200212 hasConcept C119857082 @default.
- W749200212 hasConcept C121332964 @default.
- W749200212 hasConcept C126255220 @default.
- W749200212 hasConcept C13153151 @default.
- W749200212 hasConcept C140779682 @default.
- W749200212 hasConcept C163258240 @default.
- W749200212 hasConcept C187192777 @default.
- W749200212 hasConcept C19499675 @default.
- W749200212 hasConcept C204693719 @default.
- W749200212 hasConcept C2781395549 @default.
- W749200212 hasConcept C31972630 @default.
- W749200212 hasConcept C33923547 @default.
- W749200212 hasConcept C41008148 @default.
- W749200212 hasConcept C43214815 @default.
- W749200212 hasConcept C52740198 @default.
- W749200212 hasConcept C62520636 @default.
- W749200212 hasConcept C98763669 @default.
- W749200212 hasConceptScore W749200212C105795698 @default.
- W749200212 hasConceptScore W749200212C106131492 @default.
- W749200212 hasConceptScore W749200212C111350023 @default.
- W749200212 hasConceptScore W749200212C11413529 @default.
- W749200212 hasConceptScore W749200212C119857082 @default.
- W749200212 hasConceptScore W749200212C121332964 @default.
- W749200212 hasConceptScore W749200212C126255220 @default.