Matches in SemOpenAlex for { <https://semopenalex.org/work/W7500017> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W7500017 startingPage "258" @default.
- W7500017 abstract "Researchers in the behavioral sciences have for some time used the related procedures of principal components and factor analysis in an attempt to validate tests or other measurement systems. Many articles have been written recommending when to use principal components, principal axis factoring, Maximum-Likelihood estimators, etc.. In addition, the data analyst has learned he/she must choose among recommendations concerning the use of rotations to achieve simple structure, - varimax, oblique, promax, etc. However, until recently, researchers in many fields have not known that they should also attend to the type of correlation/covariance matrix analyzed. The near standard use of a Pearson correlation matrix is no doubt due in part to the availability of computer programs which by default make use of a Pearson matrix. Although the literature has for some time suggested that it is incorrect to treat nominal and ordinal data as interval or ratio (Anderson, 1961; Armstrong, 1981; Stevens, 1946, 1951), researchers are apparently failing to heed the warnings when computing correlations. Several excellent articles have been published in recent years which explain the scale problem in great detail and suggest alternative procedures (Gaito, 1980; Marcus-Roberts & Roberts, 1987; Mislevy, 1986; Muthen 1983, 1984, 1988; Muthen & Kaplan, 1985). Yet, it is common practice, if a failure to mention the type of matrix analyzed is any indication, to factor analyze a Pearson correlation matrix when the investigator is attempting to establish the validity of a Likert scale. The purpose of this paper is to present examples demonstrating the results of different approaches to model specification rather than considering the scaling problem in detail. The scaling problems have been discussed elsewhere (Joreskog & Sorbom, 1986, 1988; Marcus-Roberts et al., 1987; Mislevey, 1986; Muthen, 1983, 1984, 1988; Muthen et al., 1985) and the interested reader is referred to these excellent articles for complete detail. It does need to be mentioned here that ordinal variables do not have a metric scale and tend to be attenuated due to the severe restriction on range. However, an ordinal variable z can be thought of as a crude representation of the unobserved continuous variable z*. The correlation between two ordinal variable |z*.sub.1~ and |z*.sub.2~ is known as the polychoric correlation coefficient, and is an estimate of the unobserved relationship between the two variables. The Monte Carlo studies of Joreskog and Sorbom (1986) and data presented by Muthen and Kaplan (1985) suggest that polychoric correlations should be the procedure of choice when considering the type of matrix to analyze. According to their work it would be just as inappropriate to analyze a Pearson matrix computed from ordinal data as to use a correlated t-test when the sample design dictated a separate sample test. In addition, the excellent article by Muthen and Kaplan gives the data analyst guidance when dealing with non-normal Likert variables. Their evidence suggests that in the presence of strong skewness and/or kurtosis - as is often the case with Liken items - it may be more appropriate to treat the variables as z*'s. Joreskog and Sorbom (1988) have presented the results of confirmatory factor analyses of data collected on Swedish school children, computed under four different conditions; (a) normal theory (GLS) of a Pearson correlation matrix, (b) normal theory (GLS) or a polychoric matrix, (c) non-Normal theory using a Pearson matrix, and (d) non-normal theory using a polychoric matrix. They indicated that only the weighted least squares with polychoric correlations returns asymptotically correct results. Weighted least squares using product-moment correlations based on normal scores is biased while the standard errors of the GLS estimates are wrong because the formula is incorrect. For the illustrations in this paper we have chosen to analyze the data matrix presented by Joreskog et at. …" @default.
- W7500017 created "2016-06-24" @default.
- W7500017 creator A5049603298 @default.
- W7500017 creator A5074288116 @default.
- W7500017 date "1993-12-22" @default.
- W7500017 modified "2023-09-23" @default.
- W7500017 title "Factor Analysis and Ordinal Data" @default.
- W7500017 hasPublicationYear "1993" @default.
- W7500017 type Work @default.
- W7500017 sameAs 7500017 @default.
- W7500017 citedByCount "12" @default.
- W7500017 countsByYear W75000172012 @default.
- W7500017 countsByYear W75000172013 @default.
- W7500017 countsByYear W75000172014 @default.
- W7500017 countsByYear W75000172021 @default.
- W7500017 crossrefType "journal-article" @default.
- W7500017 hasAuthorship W7500017A5049603298 @default.
- W7500017 hasAuthorship W7500017A5074288116 @default.
- W7500017 hasConcept C105776082 @default.
- W7500017 hasConcept C105795698 @default.
- W7500017 hasConcept C106487976 @default.
- W7500017 hasConcept C106906290 @default.
- W7500017 hasConcept C111919701 @default.
- W7500017 hasConcept C117220453 @default.
- W7500017 hasConcept C121332964 @default.
- W7500017 hasConcept C144559511 @default.
- W7500017 hasConcept C149782125 @default.
- W7500017 hasConcept C159985019 @default.
- W7500017 hasConcept C171606756 @default.
- W7500017 hasConcept C179861144 @default.
- W7500017 hasConcept C185142706 @default.
- W7500017 hasConcept C185429906 @default.
- W7500017 hasConcept C192562407 @default.
- W7500017 hasConcept C2524010 @default.
- W7500017 hasConcept C27438332 @default.
- W7500017 hasConcept C2778755073 @default.
- W7500017 hasConcept C33923547 @default.
- W7500017 hasConcept C41008148 @default.
- W7500017 hasConcept C55078378 @default.
- W7500017 hasConcept C62520636 @default.
- W7500017 hasConcept C7733816 @default.
- W7500017 hasConcept C85461838 @default.
- W7500017 hasConceptScore W7500017C105776082 @default.
- W7500017 hasConceptScore W7500017C105795698 @default.
- W7500017 hasConceptScore W7500017C106487976 @default.
- W7500017 hasConceptScore W7500017C106906290 @default.
- W7500017 hasConceptScore W7500017C111919701 @default.
- W7500017 hasConceptScore W7500017C117220453 @default.
- W7500017 hasConceptScore W7500017C121332964 @default.
- W7500017 hasConceptScore W7500017C144559511 @default.
- W7500017 hasConceptScore W7500017C149782125 @default.
- W7500017 hasConceptScore W7500017C159985019 @default.
- W7500017 hasConceptScore W7500017C171606756 @default.
- W7500017 hasConceptScore W7500017C179861144 @default.
- W7500017 hasConceptScore W7500017C185142706 @default.
- W7500017 hasConceptScore W7500017C185429906 @default.
- W7500017 hasConceptScore W7500017C192562407 @default.
- W7500017 hasConceptScore W7500017C2524010 @default.
- W7500017 hasConceptScore W7500017C27438332 @default.
- W7500017 hasConceptScore W7500017C2778755073 @default.
- W7500017 hasConceptScore W7500017C33923547 @default.
- W7500017 hasConceptScore W7500017C41008148 @default.
- W7500017 hasConceptScore W7500017C55078378 @default.
- W7500017 hasConceptScore W7500017C62520636 @default.
- W7500017 hasConceptScore W7500017C7733816 @default.
- W7500017 hasConceptScore W7500017C85461838 @default.
- W7500017 hasIssue "2" @default.
- W7500017 hasLocation W75000171 @default.
- W7500017 hasOpenAccess W7500017 @default.
- W7500017 hasPrimaryLocation W75000171 @default.
- W7500017 hasRelatedWork W1531051740 @default.
- W7500017 hasRelatedWork W1559448353 @default.
- W7500017 hasRelatedWork W1571998446 @default.
- W7500017 hasRelatedWork W1942317848 @default.
- W7500017 hasRelatedWork W1985442257 @default.
- W7500017 hasRelatedWork W1987634243 @default.
- W7500017 hasRelatedWork W2007897277 @default.
- W7500017 hasRelatedWork W2031660295 @default.
- W7500017 hasRelatedWork W2041963641 @default.
- W7500017 hasRelatedWork W2059334100 @default.
- W7500017 hasRelatedWork W2064417135 @default.
- W7500017 hasRelatedWork W2080218231 @default.
- W7500017 hasRelatedWork W2088477804 @default.
- W7500017 hasRelatedWork W2124563089 @default.
- W7500017 hasRelatedWork W2145886191 @default.
- W7500017 hasRelatedWork W2157703634 @default.
- W7500017 hasRelatedWork W2469851922 @default.
- W7500017 hasRelatedWork W2612259620 @default.
- W7500017 hasRelatedWork W2896548965 @default.
- W7500017 hasRelatedWork W29736828 @default.
- W7500017 hasVolume "114" @default.
- W7500017 isParatext "false" @default.
- W7500017 isRetracted "false" @default.
- W7500017 magId "7500017" @default.
- W7500017 workType "article" @default.