Matches in SemOpenAlex for { <https://semopenalex.org/work/W750152938> ?p ?o ?g. }
- W750152938 endingPage "127" @default.
- W750152938 startingPage "115" @default.
- W750152938 abstract "Abstract The Tibetan Plateau in Western China is the world’s largest alpine landscape, sheltering a rich diversity of native flora and fauna. In the past few decades, the Tibetan Plateau was found to suffer from grassland degradation processes. Grassland degradation is assumed to not only endanger biodiversity but also to increase the risk for natural hazards in other parts of the country which are ecologically and hydrologically connected to the area. However, the mechanisms behind the degradation processes remain poorly understood due to scarce baseline data and insufficient scientific research. We argue that remote sensing data can help to better understand degradation processes and patterns by: (1) identifying the distribution of severely degraded areas and (2) comparing the patterns of key spatial attributes of the identified areas (altitude above sea level, aspect, slope, administrative districts) with existing theories on degradation drivers. Therefore, we applied four Landsat 8 images covering large portions of the three counties Jigzhi, Baima and Darlag in the Eastern Tibetan Plateau. The dates of the Landsat scenes were selected to cover differing phenological stages of the ecosystem. Reference data were collected with a remotely piloted aircraft and a standard consumer RGB camera. To exploit the phenological information in the Landsat data as well as deal with the problem of cloud cover in multiple images, we developed a straightforward PCA-based procedure to merge the Landsat scenes. The merged Landsat data served as input to a supervised support vector machine classification which was validated with an iterative bootstrap procedure and an additional independent validation set. The considered classes were “high-cover grassland”, “grassland (including several stages of grassland vitality)”, “(severely) degraded grassland”, “green shrubland”, “grey shrubland”, “urban areas” and “water bodies”. Kappa accuracies ranged between 0.84 and 0.93 in the iterative procedure, while the independent validation led to a kappa accuracy of 0.76. Mean producer’s and user’s accuracies for all classes were higher than 80%, and confusion mainly occurred between the two shrubland classes and between the three grassland classes. Analysis of the slope, aspect and altitude values of the vegetation classes revealed that the degraded areas mostly occurred at the higher altitudes of the study area (4300–4600 m), with no strong connection to any specific slope or aspect. High-cover grassland was mostly located on sunny slopes at lower altitudes (less than 4300 m), while shrubland preferred shady, relatively steep slopes across all altitudes. These observations proved to be stable across the examined counties, while the proportions of land-cover classes differed between the examined regions. Most counties showed 5–7% severely degraded land cover. Darlag, the county located at the edge of the permafrost zone, and featuring the highest average altitude and lowest annual temperature and precipitation, was found to suffer from larger areas of severe degradation (14%). Therefore, our findings support a strong connection between degradation patterns and climatic as well as altitudinal gradients, with an increased degradation risk for high altitude areas and areas in colder and drier climatic zones. This is relevant information for pastoral management to avoid further degradation of high altitude pastures." @default.
- W750152938 created "2016-06-24" @default.
- W750152938 creator A5015432609 @default.
- W750152938 creator A5027475930 @default.
- W750152938 creator A5063873988 @default.
- W750152938 date "2015-10-01" @default.
- W750152938 modified "2023-09-30" @default.
- W750152938 title "Mapping degraded grassland on the Eastern Tibetan Plateau with multi-temporal Landsat 8 data — where do the severely degraded areas occur?" @default.
- W750152938 cites W1963766330 @default.
- W750152938 cites W1968563567 @default.
- W750152938 cites W1984232434 @default.
- W750152938 cites W1989632727 @default.
- W750152938 cites W1992182871 @default.
- W750152938 cites W1992927345 @default.
- W750152938 cites W1993084958 @default.
- W750152938 cites W1998939088 @default.
- W750152938 cites W1999489427 @default.
- W750152938 cites W2000047906 @default.
- W750152938 cites W2000247537 @default.
- W750152938 cites W2008052903 @default.
- W750152938 cites W2016264593 @default.
- W750152938 cites W2017348162 @default.
- W750152938 cites W2017793249 @default.
- W750152938 cites W2019112511 @default.
- W750152938 cites W2025745000 @default.
- W750152938 cites W2028240797 @default.
- W750152938 cites W2036061791 @default.
- W750152938 cites W2039768055 @default.
- W750152938 cites W2042633021 @default.
- W750152938 cites W2050827369 @default.
- W750152938 cites W2054964649 @default.
- W750152938 cites W2055505446 @default.
- W750152938 cites W2061851173 @default.
- W750152938 cites W2063907334 @default.
- W750152938 cites W2077264606 @default.
- W750152938 cites W2080115297 @default.
- W750152938 cites W2084988036 @default.
- W750152938 cites W2089116180 @default.
- W750152938 cites W2089654453 @default.
- W750152938 cites W2094967977 @default.
- W750152938 cites W2096150729 @default.
- W750152938 cites W2096524563 @default.
- W750152938 cites W2105970614 @default.
- W750152938 cites W2113066824 @default.
- W750152938 cites W2116165023 @default.
- W750152938 cites W2125953913 @default.
- W750152938 cites W2129821401 @default.
- W750152938 cites W2139212933 @default.
- W750152938 cites W2147651008 @default.
- W750152938 cites W2162467297 @default.
- W750152938 cites W2169454670 @default.
- W750152938 cites W2171058226 @default.
- W750152938 cites W2226396244 @default.
- W750152938 cites W2372441685 @default.
- W750152938 cites W3148811850 @default.
- W750152938 cites W59495185 @default.
- W750152938 doi "https://doi.org/10.1016/j.jag.2015.06.005" @default.
- W750152938 hasPublicationYear "2015" @default.
- W750152938 type Work @default.
- W750152938 sameAs 750152938 @default.
- W750152938 citedByCount "49" @default.
- W750152938 countsByYear W7501529382016 @default.
- W750152938 countsByYear W7501529382017 @default.
- W750152938 countsByYear W7501529382018 @default.
- W750152938 countsByYear W7501529382019 @default.
- W750152938 countsByYear W7501529382020 @default.
- W750152938 countsByYear W7501529382021 @default.
- W750152938 countsByYear W7501529382022 @default.
- W750152938 countsByYear W7501529382023 @default.
- W750152938 crossrefType "journal-article" @default.
- W750152938 hasAuthorship W750152938A5015432609 @default.
- W750152938 hasAuthorship W750152938A5027475930 @default.
- W750152938 hasAuthorship W750152938A5063873988 @default.
- W750152938 hasBestOaLocation W7501529381 @default.
- W750152938 hasConcept C100970517 @default.
- W750152938 hasConcept C134306372 @default.
- W750152938 hasConcept C18903297 @default.
- W750152938 hasConcept C205649164 @default.
- W750152938 hasConcept C2775835988 @default.
- W750152938 hasConcept C2779179000 @default.
- W750152938 hasConcept C2780030769 @default.
- W750152938 hasConcept C33923547 @default.
- W750152938 hasConcept C39432304 @default.
- W750152938 hasConcept C58640448 @default.
- W750152938 hasConcept C62649853 @default.
- W750152938 hasConcept C86803240 @default.
- W750152938 hasConcept C97137747 @default.
- W750152938 hasConceptScore W750152938C100970517 @default.
- W750152938 hasConceptScore W750152938C134306372 @default.
- W750152938 hasConceptScore W750152938C18903297 @default.
- W750152938 hasConceptScore W750152938C205649164 @default.
- W750152938 hasConceptScore W750152938C2775835988 @default.
- W750152938 hasConceptScore W750152938C2779179000 @default.
- W750152938 hasConceptScore W750152938C2780030769 @default.
- W750152938 hasConceptScore W750152938C33923547 @default.
- W750152938 hasConceptScore W750152938C39432304 @default.
- W750152938 hasConceptScore W750152938C58640448 @default.
- W750152938 hasConceptScore W750152938C62649853 @default.