Matches in SemOpenAlex for { <https://semopenalex.org/work/W752655682> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W752655682 abstract "Traditionally, nodes in a sensor network simply collect data and then pass it on to a centralized node that archives, distributes, and possibly analyzes the data. However, analysis at the individual nodes could enable faster detection of anomalies or other interesting events, as well as faster responses such as sending out alerts or increasing the data collection rate. There is an additional opportunity for increased performance if individual nodes can communicate directly with their neighbors. Previously, a method was developed by which machine learning classification algorithms could collaborate to achieve high performance autonomously (without requiring human intervention). This method worked for supervised learning algorithms, in which labeled data is used to train models. The learners collaborated by exchanging labels describing the data. The new advance enables clustering algorithms, which do not use labeled data, to also collaborate. This is achieved by defining a new language for collaboration that uses pair-wise constraints to encode useful information for other learners. These constraints specify that two items must, or cannot, be placed into the same cluster. Previous work has shown that clustering with these constraints (in isolation) already improves performance. In the problem formulation, each learner resides at a different node in the sensor network and makes observations (collects data) independently of the other learners. Each learner clusters its data and then selects a pair of items about which it is uncertain and uses them to query its neighbors. The resulting feedback (a must and cannot constraint from each neighbor) is combined by the learner into a consensus constraint, and it then reclusters its data while incorporating the new constraint. A strategy was also proposed for cleaning the resulting constraint sets, which may contain conflicting constraints; this improves performance significantly. This approach has been applied to collaborative clustering of seismic and infrasonic data collected by the Mount Erebus Volcano Observatory in Antarctica. Previous approaches to distributed clustering cannot readily be applied in a sensor network setting, because they assume that each node has the same view of the data set. A view is the set of features used to represent each object. When a single data set is partitioned across several computational nodes, distributed clustering works; all objects have the same view. But when the data is collected from different locations, using different sensors, a more flexible approach is needed. This approach instead operates in situations where the data collected at each node has a different view (e.g., seismic vs. infrasonic sensors), but they observe the same events. This enables them to exchange information about the likely cluster membership relations between objects, even if they do not use the same features to represent the objects." @default.
- W752655682 created "2016-06-24" @default.
- W752655682 creator A5020376623 @default.
- W752655682 creator A5077864225 @default.
- W752655682 creator A5087061237 @default.
- W752655682 date "2011-07-01" @default.
- W752655682 modified "2023-09-27" @default.
- W752655682 title "Collaborative Clustering for Sensor Networks" @default.
- W752655682 hasPublicationYear "2011" @default.
- W752655682 type Work @default.
- W752655682 sameAs 752655682 @default.
- W752655682 citedByCount "0" @default.
- W752655682 crossrefType "journal-article" @default.
- W752655682 hasAuthorship W752655682A5020376623 @default.
- W752655682 hasAuthorship W752655682A5077864225 @default.
- W752655682 hasAuthorship W752655682A5087061237 @default.
- W752655682 hasConcept C104317684 @default.
- W752655682 hasConcept C119857082 @default.
- W752655682 hasConcept C120314980 @default.
- W752655682 hasConcept C124101348 @default.
- W752655682 hasConcept C127413603 @default.
- W752655682 hasConcept C154945302 @default.
- W752655682 hasConcept C185592680 @default.
- W752655682 hasConcept C24590314 @default.
- W752655682 hasConcept C2775941552 @default.
- W752655682 hasConcept C2776036281 @default.
- W752655682 hasConcept C31258907 @default.
- W752655682 hasConcept C41008148 @default.
- W752655682 hasConcept C55493867 @default.
- W752655682 hasConcept C62611344 @default.
- W752655682 hasConcept C66746571 @default.
- W752655682 hasConcept C66938386 @default.
- W752655682 hasConcept C73555534 @default.
- W752655682 hasConcept C78519656 @default.
- W752655682 hasConcept C86803240 @default.
- W752655682 hasConcept C89423630 @default.
- W752655682 hasConceptScore W752655682C104317684 @default.
- W752655682 hasConceptScore W752655682C119857082 @default.
- W752655682 hasConceptScore W752655682C120314980 @default.
- W752655682 hasConceptScore W752655682C124101348 @default.
- W752655682 hasConceptScore W752655682C127413603 @default.
- W752655682 hasConceptScore W752655682C154945302 @default.
- W752655682 hasConceptScore W752655682C185592680 @default.
- W752655682 hasConceptScore W752655682C24590314 @default.
- W752655682 hasConceptScore W752655682C2775941552 @default.
- W752655682 hasConceptScore W752655682C2776036281 @default.
- W752655682 hasConceptScore W752655682C31258907 @default.
- W752655682 hasConceptScore W752655682C41008148 @default.
- W752655682 hasConceptScore W752655682C55493867 @default.
- W752655682 hasConceptScore W752655682C62611344 @default.
- W752655682 hasConceptScore W752655682C66746571 @default.
- W752655682 hasConceptScore W752655682C66938386 @default.
- W752655682 hasConceptScore W752655682C73555534 @default.
- W752655682 hasConceptScore W752655682C78519656 @default.
- W752655682 hasConceptScore W752655682C86803240 @default.
- W752655682 hasConceptScore W752655682C89423630 @default.
- W752655682 hasLocation W7526556821 @default.
- W752655682 hasOpenAccess W752655682 @default.
- W752655682 hasPrimaryLocation W7526556821 @default.
- W752655682 hasRelatedWork W1500253916 @default.
- W752655682 hasRelatedWork W1963799456 @default.
- W752655682 hasRelatedWork W206502748 @default.
- W752655682 hasRelatedWork W2249907689 @default.
- W752655682 hasRelatedWork W2912815372 @default.
- W752655682 hasRelatedWork W3166596318 @default.
- W752655682 hasRelatedWork W3174176914 @default.
- W752655682 hasRelatedWork W3190501810 @default.
- W752655682 hasRelatedWork W2109322242 @default.
- W752655682 isParatext "false" @default.
- W752655682 isRetracted "false" @default.
- W752655682 magId "752655682" @default.
- W752655682 workType "article" @default.