Matches in SemOpenAlex for { <https://semopenalex.org/work/W753886627> ?p ?o ?g. }
- W753886627 endingPage "65" @default.
- W753886627 startingPage "51" @default.
- W753886627 abstract "Monte Carlo localization is a powerful and popular approach in mobile robot localization. Line segment-based maps provide a compact and scalable representation of indoor environments for mobile robot navigation. But Monte Carlo localization has seldom been studied in the context of line segment-based maps. A key step of the approach–and one that can endow it with or rob it of the attributes of accuracy, robustness and efficiency–is the computation of the so called importance weight associated with each particle. In this paper, we propose a new method for the computation of importance weights on maps represented with line segments, and extensively study its performance in pose tracking. We also compare our method with three other methods reported in the literature and present the results and insights thus gathered. The comparative study, conducted using both simulated and real data, on maps built from real data available in the public domain clearly establish that the proposed method is more accurate, robust and efficient than the other methods." @default.
- W753886627 created "2016-06-24" @default.
- W753886627 creator A5055706178 @default.
- W753886627 creator A5066712825 @default.
- W753886627 creator A5068681964 @default.
- W753886627 date "2015-12-01" @default.
- W753886627 modified "2023-09-25" @default.
- W753886627 title "A novel method for computation of importance weights in Monte Carlo localization on line segment-based maps" @default.
- W753886627 cites W1577509784 @default.
- W753886627 cites W1970978369 @default.
- W753886627 cites W2003363871 @default.
- W753886627 cites W2005847526 @default.
- W753886627 cites W2007896658 @default.
- W753886627 cites W2007902351 @default.
- W753886627 cites W2028564078 @default.
- W753886627 cites W2028894886 @default.
- W753886627 cites W2048489837 @default.
- W753886627 cites W2051867063 @default.
- W753886627 cites W2055628656 @default.
- W753886627 cites W2059068775 @default.
- W753886627 cites W2070119585 @default.
- W753886627 cites W2088946522 @default.
- W753886627 cites W2095942360 @default.
- W753886627 cites W2098613108 @default.
- W753886627 cites W2104467353 @default.
- W753886627 cites W2107105977 @default.
- W753886627 cites W2109749443 @default.
- W753886627 cites W2118691294 @default.
- W753886627 cites W2120712855 @default.
- W753886627 cites W2128873413 @default.
- W753886627 cites W2135269715 @default.
- W753886627 cites W2140124983 @default.
- W753886627 cites W2148542959 @default.
- W753886627 cites W2149604337 @default.
- W753886627 cites W2154418813 @default.
- W753886627 cites W2160337655 @default.
- W753886627 cites W2160584648 @default.
- W753886627 cites W2162539792 @default.
- W753886627 cites W2169545352 @default.
- W753886627 cites W2206598542 @default.
- W753886627 cites W2278787793 @default.
- W753886627 cites W2541539706 @default.
- W753886627 cites W2151791199 @default.
- W753886627 doi "https://doi.org/10.1016/j.robot.2015.07.001" @default.
- W753886627 hasPublicationYear "2015" @default.
- W753886627 type Work @default.
- W753886627 sameAs 753886627 @default.
- W753886627 citedByCount "10" @default.
- W753886627 countsByYear W7538866272015 @default.
- W753886627 countsByYear W7538866272016 @default.
- W753886627 countsByYear W7538866272017 @default.
- W753886627 countsByYear W7538866272018 @default.
- W753886627 countsByYear W7538866272019 @default.
- W753886627 countsByYear W7538866272020 @default.
- W753886627 countsByYear W7538866272023 @default.
- W753886627 crossrefType "journal-article" @default.
- W753886627 hasAuthorship W753886627A5055706178 @default.
- W753886627 hasAuthorship W753886627A5066712825 @default.
- W753886627 hasAuthorship W753886627A5068681964 @default.
- W753886627 hasConcept C104317684 @default.
- W753886627 hasConcept C105795698 @default.
- W753886627 hasConcept C106480740 @default.
- W753886627 hasConcept C11413529 @default.
- W753886627 hasConcept C154945302 @default.
- W753886627 hasConcept C157286648 @default.
- W753886627 hasConcept C17744445 @default.
- W753886627 hasConcept C182124507 @default.
- W753886627 hasConcept C185592680 @default.
- W753886627 hasConcept C19499675 @default.
- W753886627 hasConcept C198352243 @default.
- W753886627 hasConcept C199539241 @default.
- W753886627 hasConcept C19966478 @default.
- W753886627 hasConcept C2524010 @default.
- W753886627 hasConcept C26517878 @default.
- W753886627 hasConcept C2776359362 @default.
- W753886627 hasConcept C31972630 @default.
- W753886627 hasConcept C33923547 @default.
- W753886627 hasConcept C38652104 @default.
- W753886627 hasConcept C41008148 @default.
- W753886627 hasConcept C45374587 @default.
- W753886627 hasConcept C48044578 @default.
- W753886627 hasConcept C52421305 @default.
- W753886627 hasConcept C55493867 @default.
- W753886627 hasConcept C63479239 @default.
- W753886627 hasConcept C77088390 @default.
- W753886627 hasConcept C90509273 @default.
- W753886627 hasConcept C94625758 @default.
- W753886627 hasConceptScore W753886627C104317684 @default.
- W753886627 hasConceptScore W753886627C105795698 @default.
- W753886627 hasConceptScore W753886627C106480740 @default.
- W753886627 hasConceptScore W753886627C11413529 @default.
- W753886627 hasConceptScore W753886627C154945302 @default.
- W753886627 hasConceptScore W753886627C157286648 @default.
- W753886627 hasConceptScore W753886627C17744445 @default.
- W753886627 hasConceptScore W753886627C182124507 @default.
- W753886627 hasConceptScore W753886627C185592680 @default.
- W753886627 hasConceptScore W753886627C19499675 @default.
- W753886627 hasConceptScore W753886627C198352243 @default.