Matches in SemOpenAlex for { <https://semopenalex.org/work/W755477143> ?p ?o ?g. }
Showing items 1 to 64 of
64
with 100 items per page.
- W755477143 abstract "Function approximation capabilities of feedforward Neural Networks have been widely investigated over the past couple of decades. There has been quite a lot of work carried out in order to prove ?Universal Approximation Property? of these Networks. Most of the work in application of Neural Networks for function approximation has concentrated on problems where the input variables are continuous. However, there are many real world examples around us in which input variables constitute only discrete values, or a significant number of these input variables are discrete. Most of the learning algorithms proposed so far do not distinguish between different features of continuous and discrete input spaces and treat them in more or less the same way. Due to this reason, corresponding learning algorithms becomes unnecessarily complex and time consuming, especially when dealing with inputs mainly consisting of discrete variables. More recently, it has been shown that by focusing on special features of discrete input spaces, more simplified and robust algorithms can be developed. The main objective of this work is to address the function approximation capabilities of Artificial Neural Networks. There is particular emphasis on development, implementation, testing and analysis of new learning algorithms for the Simplified Neural Network approximation scheme for functions defined on discrete input spaces. By developing the corresponding learning algorithms, and testing with different benchmarking data sets, it is shown that comparing conventional multilayer neural networks for approximating functions on discrete input spaces, the proposed simplified neural network architecture and algorithms can achieve similar or better approximation accuracy. This is particularly the case when dealing with high dimensional-low sample cases, but with a much simpler architecture and less parameters. In order to investigate wider implications of simplified Neural Networks, their application has been extended to the Regression Boosting frame work. By developing, implementing and testing with empirical data it has been shown that these simplified Neural Network based algorithms also performs well in other Neural Network based ensembles." @default.
- W755477143 created "2016-06-24" @default.
- W755477143 creator A5003314037 @default.
- W755477143 date "2011-06-28" @default.
- W755477143 modified "2023-09-23" @default.
- W755477143 title "SIMPLIFIED NEURAL NETWORKS ALGORITHMS FOR FUNCTION APPROXIMATION AND REGRESSION BOOSTING ON DISCRETE INPUT SPACES." @default.
- W755477143 hasPublicationYear "2011" @default.
- W755477143 type Work @default.
- W755477143 sameAs 755477143 @default.
- W755477143 citedByCount "1" @default.
- W755477143 countsByYear W7554771432018 @default.
- W755477143 crossrefType "dissertation" @default.
- W755477143 hasAuthorship W755477143A5003314037 @default.
- W755477143 hasConcept C11413529 @default.
- W755477143 hasConcept C119857082 @default.
- W755477143 hasConcept C14036430 @default.
- W755477143 hasConcept C154945302 @default.
- W755477143 hasConcept C33923547 @default.
- W755477143 hasConcept C41008148 @default.
- W755477143 hasConcept C46686674 @default.
- W755477143 hasConcept C47702885 @default.
- W755477143 hasConcept C50644808 @default.
- W755477143 hasConcept C78458016 @default.
- W755477143 hasConcept C86803240 @default.
- W755477143 hasConcept C91873725 @default.
- W755477143 hasConceptScore W755477143C11413529 @default.
- W755477143 hasConceptScore W755477143C119857082 @default.
- W755477143 hasConceptScore W755477143C14036430 @default.
- W755477143 hasConceptScore W755477143C154945302 @default.
- W755477143 hasConceptScore W755477143C33923547 @default.
- W755477143 hasConceptScore W755477143C41008148 @default.
- W755477143 hasConceptScore W755477143C46686674 @default.
- W755477143 hasConceptScore W755477143C47702885 @default.
- W755477143 hasConceptScore W755477143C50644808 @default.
- W755477143 hasConceptScore W755477143C78458016 @default.
- W755477143 hasConceptScore W755477143C86803240 @default.
- W755477143 hasConceptScore W755477143C91873725 @default.
- W755477143 hasLocation W7554771431 @default.
- W755477143 hasOpenAccess W755477143 @default.
- W755477143 hasPrimaryLocation W7554771431 @default.
- W755477143 hasRelatedWork W127974184 @default.
- W755477143 hasRelatedWork W156016546 @default.
- W755477143 hasRelatedWork W1575486320 @default.
- W755477143 hasRelatedWork W19168927 @default.
- W755477143 hasRelatedWork W1991554637 @default.
- W755477143 hasRelatedWork W2078974763 @default.
- W755477143 hasRelatedWork W2107725879 @default.
- W755477143 hasRelatedWork W2211174136 @default.
- W755477143 hasRelatedWork W2271846546 @default.
- W755477143 hasRelatedWork W2282514586 @default.
- W755477143 hasRelatedWork W2323614877 @default.
- W755477143 hasRelatedWork W278373674 @default.
- W755477143 hasRelatedWork W2966976397 @default.
- W755477143 hasRelatedWork W2986628990 @default.
- W755477143 hasRelatedWork W2991337921 @default.
- W755477143 hasRelatedWork W3127046748 @default.
- W755477143 hasRelatedWork W43589402 @default.
- W755477143 hasRelatedWork W781522344 @default.
- W755477143 hasRelatedWork W936354954 @default.
- W755477143 hasRelatedWork W2181499498 @default.
- W755477143 isParatext "false" @default.
- W755477143 isRetracted "false" @default.
- W755477143 magId "755477143" @default.
- W755477143 workType "dissertation" @default.