Matches in SemOpenAlex for { <https://semopenalex.org/work/W755588900> ?p ?o ?g. }
- W755588900 endingPage "e1041" @default.
- W755588900 startingPage "e1041" @default.
- W755588900 abstract "Accurate identification of protein–protein interactions (PPI) is the key step in understanding proteins’ biological functions, which are typically context-dependent. Many existing PPI predictors rely on aggregated features from protein sequences, however only a few methods exploit local information about specific residue contacts. In this work we present a two-stage machine learning approach for prediction of protein–protein interactions. We start with the carefully filtered data on protein complexes available for Saccharomyces cerevisiae in the Protein Data Bank (PDB) database. First, we build linear descriptions of interacting and non-interacting sequence segment pairs based on their inter-residue distances. Secondly, we train machine learning classifiers to predict binary segment interactions for any two short sequence fragments. The final prediction of the protein–protein interaction is done using the 2D matrix representation of all-against-all possible interacting sequence segments of both analysed proteins. The level-I predictor achieves 0.88 AUC for micro-scale, i.e., residue-level prediction. The level-II predictor improves the results further by a more complex learning paradigm. We perform 30-fold macro-scale, i.e., protein-level cross-validation experiment. The level-II predictor using PSIPRED-predicted secondary structure reaches 0.70 precision, 0.68 recall, and 0.70 AUC, whereas other popular methods provide results below 0.6 threshold (recall, precision, AUC). Our results demonstrate that multi-scale sequence features aggregation procedure is able to improve the machine learning results by more than 10% as compared to other sequence representations. Prepared datasets and source code for our experimental pipeline are freely available for download from: http://zubekj.github.io/mlppi/ (open source Python implementation, OS independent)." @default.
- W755588900 created "2016-06-24" @default.
- W755588900 creator A5014140856 @default.
- W755588900 creator A5021916927 @default.
- W755588900 creator A5043105133 @default.
- W755588900 creator A5046533889 @default.
- W755588900 creator A5068002107 @default.
- W755588900 creator A5081231697 @default.
- W755588900 date "2015-07-02" @default.
- W755588900 modified "2023-09-25" @default.
- W755588900 title "Multi-level machine learning prediction of protein–protein interactions in<i>Saccharomyces cerevisiae</i>" @default.
- W755588900 cites W1517622624 @default.
- W755588900 cites W1527657091 @default.
- W755588900 cites W1996202672 @default.
- W755588900 cites W2001900040 @default.
- W755588900 cites W2008708467 @default.
- W755588900 cites W2008840001 @default.
- W755588900 cites W2043338013 @default.
- W755588900 cites W2043904638 @default.
- W755588900 cites W2065516946 @default.
- W755588900 cites W2076118331 @default.
- W755588900 cites W2101803429 @default.
- W755588900 cites W2104239076 @default.
- W755588900 cites W2111761681 @default.
- W755588900 cites W2126103104 @default.
- W755588900 cites W2130479394 @default.
- W755588900 cites W2131275135 @default.
- W755588900 cites W2135002317 @default.
- W755588900 cites W2135483587 @default.
- W755588900 cites W2142808579 @default.
- W755588900 cites W2145957695 @default.
- W755588900 cites W2153187042 @default.
- W755588900 cites W2157259034 @default.
- W755588900 cites W2161701113 @default.
- W755588900 cites W2170463736 @default.
- W755588900 cites W2605068739 @default.
- W755588900 cites W4230683138 @default.
- W755588900 cites W91202314 @default.
- W755588900 doi "https://doi.org/10.7717/peerj.1041" @default.
- W755588900 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4493684" @default.
- W755588900 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26157620" @default.
- W755588900 hasPublicationYear "2015" @default.
- W755588900 type Work @default.
- W755588900 sameAs 755588900 @default.
- W755588900 citedByCount "12" @default.
- W755588900 countsByYear W7555889002016 @default.
- W755588900 countsByYear W7555889002017 @default.
- W755588900 countsByYear W7555889002018 @default.
- W755588900 countsByYear W7555889002019 @default.
- W755588900 countsByYear W7555889002020 @default.
- W755588900 countsByYear W7555889002022 @default.
- W755588900 countsByYear W7555889002023 @default.
- W755588900 crossrefType "journal-article" @default.
- W755588900 hasAuthorship W755588900A5014140856 @default.
- W755588900 hasAuthorship W755588900A5021916927 @default.
- W755588900 hasAuthorship W755588900A5043105133 @default.
- W755588900 hasAuthorship W755588900A5046533889 @default.
- W755588900 hasAuthorship W755588900A5068002107 @default.
- W755588900 hasAuthorship W755588900A5081231697 @default.
- W755588900 hasBestOaLocation W7555889001 @default.
- W755588900 hasConcept C10010492 @default.
- W755588900 hasConcept C104317684 @default.
- W755588900 hasConcept C11804247 @default.
- W755588900 hasConcept C119857082 @default.
- W755588900 hasConcept C153180895 @default.
- W755588900 hasConcept C154945302 @default.
- W755588900 hasConcept C167625842 @default.
- W755588900 hasConcept C33923547 @default.
- W755588900 hasConcept C41008148 @default.
- W755588900 hasConcept C48372109 @default.
- W755588900 hasConcept C54355233 @default.
- W755588900 hasConcept C86803240 @default.
- W755588900 hasConcept C94375191 @default.
- W755588900 hasConceptScore W755588900C10010492 @default.
- W755588900 hasConceptScore W755588900C104317684 @default.
- W755588900 hasConceptScore W755588900C11804247 @default.
- W755588900 hasConceptScore W755588900C119857082 @default.
- W755588900 hasConceptScore W755588900C153180895 @default.
- W755588900 hasConceptScore W755588900C154945302 @default.
- W755588900 hasConceptScore W755588900C167625842 @default.
- W755588900 hasConceptScore W755588900C33923547 @default.
- W755588900 hasConceptScore W755588900C41008148 @default.
- W755588900 hasConceptScore W755588900C48372109 @default.
- W755588900 hasConceptScore W755588900C54355233 @default.
- W755588900 hasConceptScore W755588900C86803240 @default.
- W755588900 hasConceptScore W755588900C94375191 @default.
- W755588900 hasLocation W7555889001 @default.
- W755588900 hasLocation W7555889002 @default.
- W755588900 hasLocation W7555889003 @default.
- W755588900 hasLocation W7555889004 @default.
- W755588900 hasLocation W7555889005 @default.
- W755588900 hasOpenAccess W755588900 @default.
- W755588900 hasPrimaryLocation W7555889001 @default.
- W755588900 hasRelatedWork W2961085424 @default.
- W755588900 hasRelatedWork W3028912875 @default.
- W755588900 hasRelatedWork W3046775127 @default.
- W755588900 hasRelatedWork W3170094116 @default.
- W755588900 hasRelatedWork W4205958290 @default.