Matches in SemOpenAlex for { <https://semopenalex.org/work/W7564530> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W7564530 abstract "Digital video has become vastly popular in the last decade and is fast replacing its analog counterpart in every walk of life. However, like analog video, digital video is also plagued with additive noise which degrades its quality and hinders its processing. Hence, it is imperative that the corrupting noise be removed from the digital video. Although there are several methods to achieve this, not many techniques preserve the quality and the detail content of the video while filtering the noise aggressively. This thesis concentrates primarily on the problem of additive noise removal from video sequences in the wavelet domain. A new statistical model for the subband coefficients of the video sequence is proposed. The spatial as well as the temporal subband data has been modeled using a prior based on the generalized Gaussian distribution. Along with modeling the a priori distribution of the spatial subband coefficients, this model accounts for the motion which occurs between successive frames. A novel spatio-temporal filter for video denoising that operates entirely in the wavelet domain is then proposed. For effective noise reduction, the spatial and the temporal redundancies that exist in the wavelet domain representation of a video signal are exploited. The use of discrete cosine transform (DCT) is proposed to reduce the redundancies in the temporal direction. After the application of the DCT, the coefficients in the different wavelet domain subbands for the original image sequence are modeled using a prior having a generalized Gaussian distribution. Based on this prior, filtering of the noisy wavelet coefficients in each subband is now carried out using a low-complexity wavelet shrinkage method that utilizes the correlation that exists between subsequent resolution levels. Based on the proposed model, where the subband coefficients in individual frames as well as the wavelet coefficient difference occurring between two consecutive frames is modeled using the generalized Gaussian distribution, minimum mean squared error and maximum a posteriori Bayesian processors are proposed which estimate the noise-free wavelet coefficients in the current frame conditioned on the noisy coefficients in the current frame and the filtered coefficients in the past frame. Based on the proposed statistical model, another novel noise reduction technique is proposed which exploits the spatial and the temporal redundancies that persist in the wavelet domain representation of the video sequence sequentially. The sequentially processed outputs of a Kalman filter and a spatial Bayesian filter are combined using an adaptive weighted averaging scheme. The interscale dependencies in the subband representation of each frame are also modeled using a non-Gaussian bivariate distribution. The parameters for this bivariate distribution are estimated adaptively using the local correlations that exist between neighboring coefficients within each subband. Based on this bivariate distribution a shrinkage function is developed using the maximum a posteriori rule. To improve the performance of the filter, information from the adjacent frames is also incorporated in the shrinkage function. Experimental results for all the presented algorithms show that the proposed schemes outperform several state-of-the-art spatio-temporal filters in terms of peak signal to noise ratio as well as visual quality." @default.
- W7564530 created "2016-06-24" @default.
- W7564530 creator A5018639233 @default.
- W7564530 date "2011-12-01" @default.
- W7564530 modified "2023-09-26" @default.
- W7564530 title "Video Modeling and Noise Reduction in the Wavelet Domain" @default.
- W7564530 hasPublicationYear "2011" @default.
- W7564530 type Work @default.
- W7564530 sameAs 7564530 @default.
- W7564530 citedByCount "0" @default.
- W7564530 crossrefType "dissertation" @default.
- W7564530 hasAuthorship W7564530A5018639233 @default.
- W7564530 hasConcept C111350171 @default.
- W7564530 hasConcept C11413529 @default.
- W7564530 hasConcept C115961682 @default.
- W7564530 hasConcept C153180895 @default.
- W7564530 hasConcept C154945302 @default.
- W7564530 hasConcept C163294075 @default.
- W7564530 hasConcept C196216189 @default.
- W7564530 hasConcept C202474056 @default.
- W7564530 hasConcept C2221639 @default.
- W7564530 hasConcept C23431618 @default.
- W7564530 hasConcept C30814859 @default.
- W7564530 hasConcept C31972630 @default.
- W7564530 hasConcept C33923547 @default.
- W7564530 hasConcept C41008148 @default.
- W7564530 hasConcept C4199805 @default.
- W7564530 hasConcept C46286280 @default.
- W7564530 hasConcept C47432892 @default.
- W7564530 hasConcept C65483669 @default.
- W7564530 hasConcept C73339587 @default.
- W7564530 hasConcept C99498987 @default.
- W7564530 hasConceptScore W7564530C111350171 @default.
- W7564530 hasConceptScore W7564530C11413529 @default.
- W7564530 hasConceptScore W7564530C115961682 @default.
- W7564530 hasConceptScore W7564530C153180895 @default.
- W7564530 hasConceptScore W7564530C154945302 @default.
- W7564530 hasConceptScore W7564530C163294075 @default.
- W7564530 hasConceptScore W7564530C196216189 @default.
- W7564530 hasConceptScore W7564530C202474056 @default.
- W7564530 hasConceptScore W7564530C2221639 @default.
- W7564530 hasConceptScore W7564530C23431618 @default.
- W7564530 hasConceptScore W7564530C30814859 @default.
- W7564530 hasConceptScore W7564530C31972630 @default.
- W7564530 hasConceptScore W7564530C33923547 @default.
- W7564530 hasConceptScore W7564530C41008148 @default.
- W7564530 hasConceptScore W7564530C4199805 @default.
- W7564530 hasConceptScore W7564530C46286280 @default.
- W7564530 hasConceptScore W7564530C47432892 @default.
- W7564530 hasConceptScore W7564530C65483669 @default.
- W7564530 hasConceptScore W7564530C73339587 @default.
- W7564530 hasConceptScore W7564530C99498987 @default.
- W7564530 hasLocation W75645301 @default.
- W7564530 hasOpenAccess W7564530 @default.
- W7564530 hasPrimaryLocation W75645301 @default.
- W7564530 hasRelatedWork W1563712808 @default.
- W7564530 hasRelatedWork W176364322 @default.
- W7564530 hasRelatedWork W1991896736 @default.
- W7564530 hasRelatedWork W2102154257 @default.
- W7564530 hasRelatedWork W2124744657 @default.
- W7564530 hasRelatedWork W2127192017 @default.
- W7564530 hasRelatedWork W2127659384 @default.
- W7564530 hasRelatedWork W2155844641 @default.
- W7564530 hasRelatedWork W2184116755 @default.
- W7564530 hasRelatedWork W2185953547 @default.
- W7564530 hasRelatedWork W2293722501 @default.
- W7564530 hasRelatedWork W2302088975 @default.
- W7564530 hasRelatedWork W2358398733 @default.
- W7564530 hasRelatedWork W2423671930 @default.
- W7564530 hasRelatedWork W2589079475 @default.
- W7564530 hasRelatedWork W2891961718 @default.
- W7564530 hasRelatedWork W3047027184 @default.
- W7564530 hasRelatedWork W3206711565 @default.
- W7564530 hasRelatedWork W590700975 @default.
- W7564530 hasRelatedWork W2866215407 @default.
- W7564530 isParatext "false" @default.
- W7564530 isRetracted "false" @default.
- W7564530 magId "7564530" @default.
- W7564530 workType "dissertation" @default.