Matches in SemOpenAlex for { <https://semopenalex.org/work/W756899809> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W756899809 abstract "A reliability analysis studies a mathematical model of a physical system taking into account uncertainties of design variables and common results are estimations of a response density, which also implies estimations of its parameters. Some common density parameters include the mean value, the standard deviation, and specific percentile(s) of the response, which are measures of central tendency, variation, and probability regions, respectively. Reliability analyses are important since the results can lead to different designs by calculating the probability of observing safe responses in each of the proposed designs. All of this is done at the expense of added computational time as compared to a single deterministic analysis which will result in one value of the response out of many that make up the density of the response. Sampling methods, such as monte carlo (MC) and latin hypercube sampling (LHS), can be used to perform reliability analyses and can compute nonlinear response density parameters even if the response is dependent on many random variables. Hence, both methods are very robust; however, they are computationally expensive to use in the estimation of the response density parameters. Both methods are 2 of 13 stochastic methods that are contained within the Numerical Evaluation of Stochastic Structures Under Stress (NESSUS) program. NESSUS is a probabilistic finite element analysis (FEA) program that was developed through funding from NASA Glenn Research Center (GRC). It has the additional capability of being linked to other analysis programs; therefore, probabilistic fluid dynamics, fracture mechanics, and heat transfer are only a few of what is possible with this software. The LHS method is the newest addition to the stochastic methods within NESSUS. Part of this work was to enhance NESSUS with the LHS method. The new LHS module is complete, has been successfully integrated with NESSUS, and been used to study four different test cases that have been proposed by the Society of Automotive Engineers (SAE). The test cases compare different probabilistic methods within NESSUS because it is important that a user can have confidence that estimates of stochastic parameters of a response will be within an acceptable error limit. For each response, the mean, standard deviation, and 0.99 percentile, are repeatedly estimated which allows confidence statements to be made for each parameter estimated, and for each method. Thus, the ability of several stochastic methods to efficiently and accurately estimate density parameters is compared using four valid test cases. While all of the reliability methods used performed quite well, for the new LHS module within NESSUS it was found that it had a lower estimation error than MC when they were used to estimate the mean, standard deviation, and 0.99 percentile of the four different stochastic responses. Also, LHS required a smaller amount of calculations to obtain low error answers with a high amount of confidence than MC. It can therefore be stated that NESSUS is an important reliability tool that has a variety of sound probabilistic methods a user can employ and the newest LHS module is a valuable new enhancement of the program." @default.
- W756899809 created "2016-06-24" @default.
- W756899809 creator A5009317704 @default.
- W756899809 creator A5084951999 @default.
- W756899809 date "2003-02-01" @default.
- W756899809 modified "2023-09-27" @default.
- W756899809 title "Structural Reliability Using Probability Density Estimation Methods Within NESSUS" @default.
- W756899809 hasPublicationYear "2003" @default.
- W756899809 type Work @default.
- W756899809 sameAs 756899809 @default.
- W756899809 citedByCount "0" @default.
- W756899809 crossrefType "journal-article" @default.
- W756899809 hasAuthorship W756899809A5009317704 @default.
- W756899809 hasAuthorship W756899809A5084951999 @default.
- W756899809 hasConcept C105795698 @default.
- W756899809 hasConcept C106131492 @default.
- W756899809 hasConcept C121332964 @default.
- W756899809 hasConcept C122048520 @default.
- W756899809 hasConcept C122123141 @default.
- W756899809 hasConcept C126255220 @default.
- W756899809 hasConcept C127413603 @default.
- W756899809 hasConcept C135628077 @default.
- W756899809 hasConcept C140779682 @default.
- W756899809 hasConcept C149441793 @default.
- W756899809 hasConcept C163258240 @default.
- W756899809 hasConcept C19499675 @default.
- W756899809 hasConcept C197055811 @default.
- W756899809 hasConcept C20820323 @default.
- W756899809 hasConcept C22679943 @default.
- W756899809 hasConcept C24404364 @default.
- W756899809 hasConcept C28826006 @default.
- W756899809 hasConcept C31972630 @default.
- W756899809 hasConcept C33923547 @default.
- W756899809 hasConcept C41008148 @default.
- W756899809 hasConcept C43214815 @default.
- W756899809 hasConcept C49937458 @default.
- W756899809 hasConcept C52740198 @default.
- W756899809 hasConcept C62520636 @default.
- W756899809 hasConcept C66938386 @default.
- W756899809 hasConceptScore W756899809C105795698 @default.
- W756899809 hasConceptScore W756899809C106131492 @default.
- W756899809 hasConceptScore W756899809C121332964 @default.
- W756899809 hasConceptScore W756899809C122048520 @default.
- W756899809 hasConceptScore W756899809C122123141 @default.
- W756899809 hasConceptScore W756899809C126255220 @default.
- W756899809 hasConceptScore W756899809C127413603 @default.
- W756899809 hasConceptScore W756899809C135628077 @default.
- W756899809 hasConceptScore W756899809C140779682 @default.
- W756899809 hasConceptScore W756899809C149441793 @default.
- W756899809 hasConceptScore W756899809C163258240 @default.
- W756899809 hasConceptScore W756899809C19499675 @default.
- W756899809 hasConceptScore W756899809C197055811 @default.
- W756899809 hasConceptScore W756899809C20820323 @default.
- W756899809 hasConceptScore W756899809C22679943 @default.
- W756899809 hasConceptScore W756899809C24404364 @default.
- W756899809 hasConceptScore W756899809C28826006 @default.
- W756899809 hasConceptScore W756899809C31972630 @default.
- W756899809 hasConceptScore W756899809C33923547 @default.
- W756899809 hasConceptScore W756899809C41008148 @default.
- W756899809 hasConceptScore W756899809C43214815 @default.
- W756899809 hasConceptScore W756899809C49937458 @default.
- W756899809 hasConceptScore W756899809C52740198 @default.
- W756899809 hasConceptScore W756899809C62520636 @default.
- W756899809 hasConceptScore W756899809C66938386 @default.
- W756899809 hasLocation W7568998091 @default.
- W756899809 hasOpenAccess W756899809 @default.
- W756899809 hasPrimaryLocation W7568998091 @default.
- W756899809 hasRelatedWork W1571639182 @default.
- W756899809 hasRelatedWork W1972690394 @default.
- W756899809 hasRelatedWork W2012974856 @default.
- W756899809 hasRelatedWork W2041195681 @default.
- W756899809 hasRelatedWork W2061326664 @default.
- W756899809 hasRelatedWork W2136734035 @default.
- W756899809 hasRelatedWork W2297009022 @default.
- W756899809 hasRelatedWork W2333816463 @default.
- W756899809 hasRelatedWork W2381095751 @default.
- W756899809 hasRelatedWork W2750244109 @default.
- W756899809 hasRelatedWork W2766435912 @default.
- W756899809 hasRelatedWork W2901197212 @default.
- W756899809 hasRelatedWork W2921290443 @default.
- W756899809 hasRelatedWork W2949396335 @default.
- W756899809 hasRelatedWork W2997084180 @default.
- W756899809 hasRelatedWork W3001691209 @default.
- W756899809 hasRelatedWork W3016386419 @default.
- W756899809 hasRelatedWork W3140063738 @default.
- W756899809 hasRelatedWork W51096846 @default.
- W756899809 hasRelatedWork W2935498440 @default.
- W756899809 isParatext "false" @default.
- W756899809 isRetracted "false" @default.
- W756899809 magId "756899809" @default.
- W756899809 workType "article" @default.