Matches in SemOpenAlex for { <https://semopenalex.org/work/W760780> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W760780 abstract "Modern biological research aims to understand when genes are expressed andhow certain genes inuence the expression of other genes. For organizing and visualizinggene expression activity gene regulatory networks are used. The architectureof these networks holds great importance, as they enable us to identify inconsistenciesbetween hypotheses and observations, and to predict the behavior of biologicalprocesses in yet untested conditions.Data from gene expression measurements are used to construct gene regulatorynetworks. Along with the advance of high-throughput technologies for measuringgene expression statistical methods to predict regulatory networks have alsobeen evolving. This thesis presents a computational framework based on a Bayesianmodeling technique using state space models (SSM) for the inference of gene regulatorynetworks from time-series measurements.A linear SSM consists of observation and hidden state equations. The hiddenvariables can unfold effects that cannot be directly measured in an experiment, suchas missing gene expression. We have used a Bayesian MCMC approach based onGibbs sampling for the inference of parameters. However the task of determiningthe dimension of the hidden state space variables remains crucial for the accuracyof network inference. For this we have used the Bayesian evidence (or marginallikelihood) as a yardstick. In addition, the Bayesian approach also provides thepossibility of incorporating prior information, based on literature knowledge.We compare marginal likelihoods calculated from the Gibbs sampler outputto the lower bound calculated by a variational approximation. Before using thealgorithm for the analysis of real biological experimental datasets we perform validationtests using numerical experiments based on simulated time series datasetsgenerated by in-silico networks. The robustness of our algorithm can be measuredby its ability to recapture the input data and generating networks using the inferredparameters.Our developed algorithm, GBSSM, was used to infer a gene network usingE. coli data sets from the different stress conditions of temperature shift and acidstress. The resulting model for the gene expression response under temperature shiftcaptures the effects of global transcription factors, such as fnr that control the regulationof hundreds of other genes. Interestingly, we also observe the stress-inducible membrane protein OsmC regulating transcriptional activity involved in the adaptationmechanism under both temperature shift and acid stress conditions. In the caseof acid stress, integration of metabolomic and transcriptome data suggests that theobserved rapid decrease in the concentration of glycine betaine is the result of theactivation of osmoregulators which may play a key role in acid stress adaptation." @default.
- W760780 created "2016-06-24" @default.
- W760780 creator A5091866305 @default.
- W760780 date "2013-04-01" @default.
- W760780 modified "2023-09-27" @default.
- W760780 title "Reconstructing regulatory networks from high-throughput post-genomic data using MCMC methods" @default.
- W760780 hasPublicationYear "2013" @default.
- W760780 type Work @default.
- W760780 sameAs 760780 @default.
- W760780 citedByCount "0" @default.
- W760780 crossrefType "dissertation" @default.
- W760780 hasAuthorship W760780A5091866305 @default.
- W760780 hasConcept C104317684 @default.
- W760780 hasConcept C107673813 @default.
- W760780 hasConcept C111350023 @default.
- W760780 hasConcept C119857082 @default.
- W760780 hasConcept C121332964 @default.
- W760780 hasConcept C124101348 @default.
- W760780 hasConcept C137002209 @default.
- W760780 hasConcept C150194340 @default.
- W760780 hasConcept C154945302 @default.
- W760780 hasConcept C158424031 @default.
- W760780 hasConcept C160234255 @default.
- W760780 hasConcept C199360897 @default.
- W760780 hasConcept C2776214188 @default.
- W760780 hasConcept C33724603 @default.
- W760780 hasConcept C41008148 @default.
- W760780 hasConcept C54355233 @default.
- W760780 hasConcept C62520636 @default.
- W760780 hasConcept C67339327 @default.
- W760780 hasConcept C84114770 @default.
- W760780 hasConcept C86803240 @default.
- W760780 hasConcept C90559484 @default.
- W760780 hasConceptScore W760780C104317684 @default.
- W760780 hasConceptScore W760780C107673813 @default.
- W760780 hasConceptScore W760780C111350023 @default.
- W760780 hasConceptScore W760780C119857082 @default.
- W760780 hasConceptScore W760780C121332964 @default.
- W760780 hasConceptScore W760780C124101348 @default.
- W760780 hasConceptScore W760780C137002209 @default.
- W760780 hasConceptScore W760780C150194340 @default.
- W760780 hasConceptScore W760780C154945302 @default.
- W760780 hasConceptScore W760780C158424031 @default.
- W760780 hasConceptScore W760780C160234255 @default.
- W760780 hasConceptScore W760780C199360897 @default.
- W760780 hasConceptScore W760780C2776214188 @default.
- W760780 hasConceptScore W760780C33724603 @default.
- W760780 hasConceptScore W760780C41008148 @default.
- W760780 hasConceptScore W760780C54355233 @default.
- W760780 hasConceptScore W760780C62520636 @default.
- W760780 hasConceptScore W760780C67339327 @default.
- W760780 hasConceptScore W760780C84114770 @default.
- W760780 hasConceptScore W760780C86803240 @default.
- W760780 hasConceptScore W760780C90559484 @default.
- W760780 hasLocation W7607801 @default.
- W760780 hasOpenAccess W760780 @default.
- W760780 hasPrimaryLocation W7607801 @default.
- W760780 hasRelatedWork W1008654843 @default.
- W760780 hasRelatedWork W1507150067 @default.
- W760780 hasRelatedWork W1549142908 @default.
- W760780 hasRelatedWork W1571020026 @default.
- W760780 hasRelatedWork W1592730552 @default.
- W760780 hasRelatedWork W1990537251 @default.
- W760780 hasRelatedWork W2048872647 @default.
- W760780 hasRelatedWork W2086478519 @default.
- W760780 hasRelatedWork W2113273949 @default.
- W760780 hasRelatedWork W2114576856 @default.
- W760780 hasRelatedWork W2134092975 @default.
- W760780 hasRelatedWork W2142826916 @default.
- W760780 hasRelatedWork W2145033008 @default.
- W760780 hasRelatedWork W2155263871 @default.
- W760780 hasRelatedWork W2163744033 @default.
- W760780 hasRelatedWork W2166920812 @default.
- W760780 hasRelatedWork W2595685795 @default.
- W760780 hasRelatedWork W3104499332 @default.
- W760780 hasRelatedWork W3180154587 @default.
- W760780 hasRelatedWork W1852199582 @default.
- W760780 isParatext "false" @default.
- W760780 isRetracted "false" @default.
- W760780 magId "760780" @default.
- W760780 workType "dissertation" @default.