Matches in SemOpenAlex for { <https://semopenalex.org/work/W761992885> ?p ?o ?g. }
- W761992885 endingPage "87" @default.
- W761992885 startingPage "60" @default.
- W761992885 abstract "Traditional machine learning algorithms very often assume statistically independent data samples. However, this is clearly not the case in remote sensing image applications, in which pixels present spatial and/or temporal dependencies. In this work, it has been presented an approach to improve land cover image classification using a contextual approach based on optimum-path forest (OPF) and the well-known Markov random fields (MRFs), hereinafter called OPF–MRF. In addition, it is also introduced a framework to the optimization of the amount of contextual information used by OPF–MRF. Experiments over high- and medium-resolution satellite (CBERS-2B, Landsat 5 TM, Ikonos-2 MS and Geoeye) and radar (ALOS-PALSAR) images covering the area of two Brazilian cities have shown the proposed approach can overcome several shortcomings related to standard OPF classification. In some cases, the proposed approach outperformed traditional OPF in about 9% of recognition rate, which is crucial for land cover classification." @default.
- W761992885 created "2016-06-24" @default.
- W761992885 creator A5001469433 @default.
- W761992885 creator A5003275797 @default.
- W761992885 creator A5015267493 @default.
- W761992885 creator A5016303637 @default.
- W761992885 creator A5044596103 @default.
- W761992885 creator A5051958513 @default.
- W761992885 creator A5073197880 @default.
- W761992885 creator A5089704039 @default.
- W761992885 date "2015-12-01" @default.
- W761992885 modified "2023-10-16" @default.
- W761992885 title "Improving land cover classification through contextual-based optimum-path forest" @default.
- W761992885 cites W1965511886 @default.
- W761992885 cites W1987188483 @default.
- W761992885 cites W1994683528 @default.
- W761992885 cites W2006203995 @default.
- W761992885 cites W2020999234 @default.
- W761992885 cites W2021290508 @default.
- W761992885 cites W2031380708 @default.
- W761992885 cites W2033569436 @default.
- W761992885 cites W2041635227 @default.
- W761992885 cites W2044020331 @default.
- W761992885 cites W2053154970 @default.
- W761992885 cites W2063580009 @default.
- W761992885 cites W2064604707 @default.
- W761992885 cites W2068150776 @default.
- W761992885 cites W2073964496 @default.
- W761992885 cites W2096411924 @default.
- W761992885 cites W2099239187 @default.
- W761992885 cites W2099577969 @default.
- W761992885 cites W2100246094 @default.
- W761992885 cites W2113513024 @default.
- W761992885 cites W2114719076 @default.
- W761992885 cites W2117527927 @default.
- W761992885 cites W2124109413 @default.
- W761992885 cites W2130343325 @default.
- W761992885 cites W2131864940 @default.
- W761992885 cites W2143755656 @default.
- W761992885 cites W2148381466 @default.
- W761992885 cites W2152414269 @default.
- W761992885 cites W2158769954 @default.
- W761992885 cites W2159793005 @default.
- W761992885 cites W2169709581 @default.
- W761992885 cites W4248916828 @default.
- W761992885 doi "https://doi.org/10.1016/j.ins.2015.06.020" @default.
- W761992885 hasPublicationYear "2015" @default.
- W761992885 type Work @default.
- W761992885 sameAs 761992885 @default.
- W761992885 citedByCount "18" @default.
- W761992885 countsByYear W7619928852016 @default.
- W761992885 countsByYear W7619928852017 @default.
- W761992885 countsByYear W7619928852018 @default.
- W761992885 countsByYear W7619928852019 @default.
- W761992885 countsByYear W7619928852020 @default.
- W761992885 countsByYear W7619928852022 @default.
- W761992885 countsByYear W7619928852023 @default.
- W761992885 crossrefType "journal-article" @default.
- W761992885 hasAuthorship W761992885A5001469433 @default.
- W761992885 hasAuthorship W761992885A5003275797 @default.
- W761992885 hasAuthorship W761992885A5015267493 @default.
- W761992885 hasAuthorship W761992885A5016303637 @default.
- W761992885 hasAuthorship W761992885A5044596103 @default.
- W761992885 hasAuthorship W761992885A5051958513 @default.
- W761992885 hasAuthorship W761992885A5073197880 @default.
- W761992885 hasAuthorship W761992885A5089704039 @default.
- W761992885 hasBestOaLocation W7619928852 @default.
- W761992885 hasConcept C115961682 @default.
- W761992885 hasConcept C119857082 @default.
- W761992885 hasConcept C124101348 @default.
- W761992885 hasConcept C124504099 @default.
- W761992885 hasConcept C127413603 @default.
- W761992885 hasConcept C147176958 @default.
- W761992885 hasConcept C153180895 @default.
- W761992885 hasConcept C154945302 @default.
- W761992885 hasConcept C160633673 @default.
- W761992885 hasConcept C166957645 @default.
- W761992885 hasConcept C169258074 @default.
- W761992885 hasConcept C173801870 @default.
- W761992885 hasConcept C199360897 @default.
- W761992885 hasConcept C205649164 @default.
- W761992885 hasConcept C2777735758 @default.
- W761992885 hasConcept C2778045648 @default.
- W761992885 hasConcept C2779343474 @default.
- W761992885 hasConcept C2780648208 @default.
- W761992885 hasConcept C41008148 @default.
- W761992885 hasConcept C4792198 @default.
- W761992885 hasConcept C62649853 @default.
- W761992885 hasConcept C75294576 @default.
- W761992885 hasConcept C95623464 @default.
- W761992885 hasConceptScore W761992885C115961682 @default.
- W761992885 hasConceptScore W761992885C119857082 @default.
- W761992885 hasConceptScore W761992885C124101348 @default.
- W761992885 hasConceptScore W761992885C124504099 @default.
- W761992885 hasConceptScore W761992885C127413603 @default.
- W761992885 hasConceptScore W761992885C147176958 @default.
- W761992885 hasConceptScore W761992885C153180895 @default.
- W761992885 hasConceptScore W761992885C154945302 @default.