Matches in SemOpenAlex for { <https://semopenalex.org/work/W76199631> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W76199631 abstract "The setting of a Gaussian channel without power constraints is considered. In this setting the codewords are points in an n-dimensional Euclidean space (an infinite constellation). The channel coding analog of the number of codewords is the density of the constellation points, and the analog of the communication rate is the normalized log density (NLD). The highest achievable NLD with vanishing error probability (which can be thought of as the capacity) is known, as well as error exponents for the setting. In this work we are interested in t he optimal NLD for communication when a fixed, nonzero error probability is allowed. In classi cal channel coding the gap to capacity is characterized by the channel dispersion (and cannot be derived from error exponent theory). In the unconstrained setting, we show that as the codeword length (dimension) n grows, the gap to the highest achievable NLD is inversely proportional (to the first order) to the square root of the block length. We give an explicit expression for the proportion constant, which is given by the inverse Q-function of the allowed error probability, times the square root of 1 . In an analogy to a similar result in classical channel coding, it follows tha t the dispersion of infinite constellations is given by 1 nat 2 per channel use. We show that this optimal convergence rate can be achieved using lattices, therefore the result holds for the maximal e rror probability as well. Connections to the error exponent of the power constrained Gaussian channel and to the volume-to-noise ratio as a figure of merit are discussed." @default.
- W76199631 created "2016-06-24" @default.
- W76199631 creator A5016461327 @default.
- W76199631 creator A5027550575 @default.
- W76199631 creator A5066905280 @default.
- W76199631 date "2011-03-01" @default.
- W76199631 modified "2023-09-27" @default.
- W76199631 title "The Optimal Density of Infinite Constellations for the Gaussian Channel" @default.
- W76199631 cites W1512015702 @default.
- W76199631 cites W1603339577 @default.
- W76199631 cites W2018300428 @default.
- W76199631 cites W2044180609 @default.
- W76199631 cites W2103604544 @default.
- W76199631 cites W2106864314 @default.
- W76199631 cites W2132999077 @default.
- W76199631 cites W2142901448 @default.
- W76199631 cites W2160591711 @default.
- W76199631 cites W2160973043 @default.
- W76199631 cites W2751862591 @default.
- W76199631 hasPublicationYear "2011" @default.
- W76199631 type Work @default.
- W76199631 sameAs 76199631 @default.
- W76199631 citedByCount "1" @default.
- W76199631 crossrefType "posted-content" @default.
- W76199631 hasAuthorship W76199631A5016461327 @default.
- W76199631 hasAuthorship W76199631A5027550575 @default.
- W76199631 hasAuthorship W76199631A5066905280 @default.
- W76199631 hasConcept C105795698 @default.
- W76199631 hasConcept C114614502 @default.
- W76199631 hasConcept C11577676 @default.
- W76199631 hasConcept C118615104 @default.
- W76199631 hasConcept C121332964 @default.
- W76199631 hasConcept C127162648 @default.
- W76199631 hasConcept C138885662 @default.
- W76199631 hasConcept C153207627 @default.
- W76199631 hasConcept C163716315 @default.
- W76199631 hasConcept C197055811 @default.
- W76199631 hasConcept C2524010 @default.
- W76199631 hasConcept C2780388253 @default.
- W76199631 hasConcept C33923547 @default.
- W76199631 hasConcept C41008148 @default.
- W76199631 hasConcept C41895202 @default.
- W76199631 hasConcept C57273362 @default.
- W76199631 hasConcept C62520636 @default.
- W76199631 hasConcept C76155785 @default.
- W76199631 hasConceptScore W76199631C105795698 @default.
- W76199631 hasConceptScore W76199631C114614502 @default.
- W76199631 hasConceptScore W76199631C11577676 @default.
- W76199631 hasConceptScore W76199631C118615104 @default.
- W76199631 hasConceptScore W76199631C121332964 @default.
- W76199631 hasConceptScore W76199631C127162648 @default.
- W76199631 hasConceptScore W76199631C138885662 @default.
- W76199631 hasConceptScore W76199631C153207627 @default.
- W76199631 hasConceptScore W76199631C163716315 @default.
- W76199631 hasConceptScore W76199631C197055811 @default.
- W76199631 hasConceptScore W76199631C2524010 @default.
- W76199631 hasConceptScore W76199631C2780388253 @default.
- W76199631 hasConceptScore W76199631C33923547 @default.
- W76199631 hasConceptScore W76199631C41008148 @default.
- W76199631 hasConceptScore W76199631C41895202 @default.
- W76199631 hasConceptScore W76199631C57273362 @default.
- W76199631 hasConceptScore W76199631C62520636 @default.
- W76199631 hasConceptScore W76199631C76155785 @default.
- W76199631 hasLocation W761996311 @default.
- W76199631 hasOpenAccess W76199631 @default.
- W76199631 hasPrimaryLocation W761996311 @default.
- W76199631 hasRelatedWork W1511126094 @default.
- W76199631 hasRelatedWork W1980954582 @default.
- W76199631 hasRelatedWork W2031089938 @default.
- W76199631 hasRelatedWork W2076274626 @default.
- W76199631 hasRelatedWork W2084380352 @default.
- W76199631 hasRelatedWork W2100553029 @default.
- W76199631 hasRelatedWork W2113134236 @default.
- W76199631 hasRelatedWork W2160973043 @default.
- W76199631 hasRelatedWork W2162031612 @default.
- W76199631 hasRelatedWork W2168382013 @default.
- W76199631 hasRelatedWork W2170608172 @default.
- W76199631 hasRelatedWork W2171527948 @default.
- W76199631 hasRelatedWork W2536848613 @default.
- W76199631 hasRelatedWork W2551453762 @default.
- W76199631 hasRelatedWork W2904372851 @default.
- W76199631 hasRelatedWork W2950254659 @default.
- W76199631 hasRelatedWork W2963024103 @default.
- W76199631 hasRelatedWork W3106027096 @default.
- W76199631 hasRelatedWork W3199677160 @default.
- W76199631 hasRelatedWork W54484711 @default.
- W76199631 isParatext "false" @default.
- W76199631 isRetracted "false" @default.
- W76199631 magId "76199631" @default.
- W76199631 workType "article" @default.