Matches in SemOpenAlex for { <https://semopenalex.org/work/W762033914> ?p ?o ?g. }
- W762033914 endingPage "229" @default.
- W762033914 startingPage "218" @default.
- W762033914 abstract "Low-rank matrix factorization plays an important role in the areas of pattern recognition, computer vision, and machine learning. Recently, a new family of methods, such as l1-norm minimization and robust PCA, has been proposed for low-rank subspace analysis problems and has shown to be robust against outliers and missing data. But these methods suffer from heavy computation loads and can fail to find a solution when highly corrupted data are presented. In this paper, a robust orthogonal matrix approximation method using fixed-rank factorization is proposed. The proposed method finds a robust solution efficiently using orthogonality and smoothness constraints. The proposed method is also extended to handle the rank uncertainty issue by a rank estimation strategy for practical real-world problems. The proposed method is applied to a number of low-rank matrix approximation problems and experimental results show that the proposed method is highly accurate, fast, and efficient compared to the existing methods." @default.
- W762033914 created "2016-06-24" @default.
- W762033914 creator A5033764106 @default.
- W762033914 creator A5074532898 @default.
- W762033914 date "2015-11-01" @default.
- W762033914 modified "2023-10-17" @default.
- W762033914 title "Robust orthogonal matrix factorization for efficient subspace learning" @default.
- W762033914 cites W1968080575 @default.
- W762033914 cites W1986523741 @default.
- W762033914 cites W1992633833 @default.
- W762033914 cites W1995273075 @default.
- W762033914 cites W1995302825 @default.
- W762033914 cites W2013854956 @default.
- W762033914 cites W2054074553 @default.
- W762033914 cites W2060750907 @default.
- W762033914 cites W2072356364 @default.
- W762033914 cites W2089088255 @default.
- W762033914 cites W2110096996 @default.
- W762033914 cites W2110531331 @default.
- W762033914 cites W2126762950 @default.
- W762033914 cites W2138835141 @default.
- W762033914 cites W2141159272 @default.
- W762033914 cites W2145962650 @default.
- W762033914 cites W2148290050 @default.
- W762033914 cites W2151673022 @default.
- W762033914 cites W2153496554 @default.
- W762033914 cites W4240580737 @default.
- W762033914 doi "https://doi.org/10.1016/j.neucom.2015.04.074" @default.
- W762033914 hasPublicationYear "2015" @default.
- W762033914 type Work @default.
- W762033914 sameAs 762033914 @default.
- W762033914 citedByCount "4" @default.
- W762033914 countsByYear W7620339142017 @default.
- W762033914 countsByYear W7620339142018 @default.
- W762033914 countsByYear W7620339142021 @default.
- W762033914 crossrefType "journal-article" @default.
- W762033914 hasAuthorship W762033914A5033764106 @default.
- W762033914 hasAuthorship W762033914A5074532898 @default.
- W762033914 hasConcept C104317684 @default.
- W762033914 hasConcept C106487976 @default.
- W762033914 hasConcept C11413529 @default.
- W762033914 hasConcept C114614502 @default.
- W762033914 hasConcept C121332964 @default.
- W762033914 hasConcept C126255220 @default.
- W762033914 hasConcept C134306372 @default.
- W762033914 hasConcept C154945302 @default.
- W762033914 hasConcept C158693339 @default.
- W762033914 hasConcept C159985019 @default.
- W762033914 hasConcept C163716315 @default.
- W762033914 hasConcept C164226766 @default.
- W762033914 hasConcept C17137986 @default.
- W762033914 hasConcept C185592680 @default.
- W762033914 hasConcept C187834632 @default.
- W762033914 hasConcept C192562407 @default.
- W762033914 hasConcept C25023664 @default.
- W762033914 hasConcept C2524010 @default.
- W762033914 hasConcept C27438332 @default.
- W762033914 hasConcept C2777749129 @default.
- W762033914 hasConcept C2778459887 @default.
- W762033914 hasConcept C32834561 @default.
- W762033914 hasConcept C33923547 @default.
- W762033914 hasConcept C41008148 @default.
- W762033914 hasConcept C42355184 @default.
- W762033914 hasConcept C55493867 @default.
- W762033914 hasConcept C62520636 @default.
- W762033914 hasConcept C63479239 @default.
- W762033914 hasConcept C79337645 @default.
- W762033914 hasConcept C90199385 @default.
- W762033914 hasConcept C92207270 @default.
- W762033914 hasConceptScore W762033914C104317684 @default.
- W762033914 hasConceptScore W762033914C106487976 @default.
- W762033914 hasConceptScore W762033914C11413529 @default.
- W762033914 hasConceptScore W762033914C114614502 @default.
- W762033914 hasConceptScore W762033914C121332964 @default.
- W762033914 hasConceptScore W762033914C126255220 @default.
- W762033914 hasConceptScore W762033914C134306372 @default.
- W762033914 hasConceptScore W762033914C154945302 @default.
- W762033914 hasConceptScore W762033914C158693339 @default.
- W762033914 hasConceptScore W762033914C159985019 @default.
- W762033914 hasConceptScore W762033914C163716315 @default.
- W762033914 hasConceptScore W762033914C164226766 @default.
- W762033914 hasConceptScore W762033914C17137986 @default.
- W762033914 hasConceptScore W762033914C185592680 @default.
- W762033914 hasConceptScore W762033914C187834632 @default.
- W762033914 hasConceptScore W762033914C192562407 @default.
- W762033914 hasConceptScore W762033914C25023664 @default.
- W762033914 hasConceptScore W762033914C2524010 @default.
- W762033914 hasConceptScore W762033914C27438332 @default.
- W762033914 hasConceptScore W762033914C2777749129 @default.
- W762033914 hasConceptScore W762033914C2778459887 @default.
- W762033914 hasConceptScore W762033914C32834561 @default.
- W762033914 hasConceptScore W762033914C33923547 @default.
- W762033914 hasConceptScore W762033914C41008148 @default.
- W762033914 hasConceptScore W762033914C42355184 @default.
- W762033914 hasConceptScore W762033914C55493867 @default.
- W762033914 hasConceptScore W762033914C62520636 @default.
- W762033914 hasConceptScore W762033914C63479239 @default.
- W762033914 hasConceptScore W762033914C79337645 @default.