Matches in SemOpenAlex for { <https://semopenalex.org/work/W765252101> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W765252101 abstract "In this thesis we study a class of symmetric forced oscillators modeled by non-linear ordinary differential equations. Solutions for this class of systems can be symmetric or non-symmetric. When a symmetric periodic solution loses its stability as a physical parameter is varied, and two non-symmetric periodic solutions appear, this is called a symmetry breaking bifurcation. In a symmetry increasing bifurcation two conjugate chaotic attractors (i.e.,attractors which are related to each other by the symmetry) collide and form a larger symmetric chaotic attractor. Symmetry can also be restored via explosions where, as a physical parameter is varied, two conjugate attractors (chaotic or periodic) which do not intersect are suddenly embedded in one symmetric attractor. In this thesis we show that all these apparently distinct bifurcations can be realized by a single mechanism in which two conjugate attractors collide with a symmetric limit set. The same mechanism seems to operate for at least some bifurcations involving non-attracting limit sets. We illustrate this point with examples of symmetry restoration in attracting and non-attracting sets found in the forced Duffing oscillator and in a power system. Symmetry restoration in the power system is associated with a phenomenon known as ferroresonance. The study of the ferroresonance phenomenon motivated this thesis. Part of this thesis is devoted to studying one aspect of the ferroresonance phenomenon the appearance of a strange attractor with a band-like structure. This attractor was called previously a 'pseudo-periodic' attractor. Some methods for analyzing the non-autonomous systems under study are shown. We construct three different maps which highlight different features of symmetry restoring bifurcations. One map in particular captures the symmetry of a solution by sampling it every half the period of the forcing. We describe a numerical method to construct a bifurcation diagram of periodic solutions and present a non-standard approach for converting the forced oscillator to an autonomous system." @default.
- W765252101 created "2016-06-24" @default.
- W765252101 creator A5019019192 @default.
- W765252101 date "2001-01-01" @default.
- W765252101 modified "2023-09-26" @default.
- W765252101 title "A Study of Symmetric Forced Oscillators" @default.
- W765252101 hasPublicationYear "2001" @default.
- W765252101 type Work @default.
- W765252101 sameAs 765252101 @default.
- W765252101 citedByCount "0" @default.
- W765252101 crossrefType "dissertation" @default.
- W765252101 hasAuthorship W765252101A5019019192 @default.
- W765252101 hasConcept C121332964 @default.
- W765252101 hasConcept C134306372 @default.
- W765252101 hasConcept C151201525 @default.
- W765252101 hasConcept C158622935 @default.
- W765252101 hasConcept C164380108 @default.
- W765252101 hasConcept C2524010 @default.
- W765252101 hasConcept C2779886137 @default.
- W765252101 hasConcept C2781349735 @default.
- W765252101 hasConcept C33923547 @default.
- W765252101 hasConcept C62520636 @default.
- W765252101 hasConcept C93357160 @default.
- W765252101 hasConcept C98010927 @default.
- W765252101 hasConceptScore W765252101C121332964 @default.
- W765252101 hasConceptScore W765252101C134306372 @default.
- W765252101 hasConceptScore W765252101C151201525 @default.
- W765252101 hasConceptScore W765252101C158622935 @default.
- W765252101 hasConceptScore W765252101C164380108 @default.
- W765252101 hasConceptScore W765252101C2524010 @default.
- W765252101 hasConceptScore W765252101C2779886137 @default.
- W765252101 hasConceptScore W765252101C2781349735 @default.
- W765252101 hasConceptScore W765252101C33923547 @default.
- W765252101 hasConceptScore W765252101C62520636 @default.
- W765252101 hasConceptScore W765252101C93357160 @default.
- W765252101 hasConceptScore W765252101C98010927 @default.
- W765252101 hasLocation W7652521011 @default.
- W765252101 hasOpenAccess W765252101 @default.
- W765252101 hasPrimaryLocation W7652521011 @default.
- W765252101 hasRelatedWork W1846382638 @default.
- W765252101 hasRelatedWork W191294590 @default.
- W765252101 hasRelatedWork W1974095580 @default.
- W765252101 hasRelatedWork W1976533467 @default.
- W765252101 hasRelatedWork W1983540336 @default.
- W765252101 hasRelatedWork W1991402635 @default.
- W765252101 hasRelatedWork W2001024197 @default.
- W765252101 hasRelatedWork W2049208608 @default.
- W765252101 hasRelatedWork W2081103976 @default.
- W765252101 hasRelatedWork W2096217404 @default.
- W765252101 hasRelatedWork W2114364429 @default.
- W765252101 hasRelatedWork W2138799746 @default.
- W765252101 hasRelatedWork W2146505334 @default.
- W765252101 hasRelatedWork W2152871707 @default.
- W765252101 hasRelatedWork W2169616397 @default.
- W765252101 hasRelatedWork W2185511728 @default.
- W765252101 hasRelatedWork W2550303394 @default.
- W765252101 hasRelatedWork W2900722930 @default.
- W765252101 hasRelatedWork W70681120 @default.
- W765252101 hasRelatedWork W2183791899 @default.
- W765252101 isParatext "false" @default.
- W765252101 isRetracted "false" @default.
- W765252101 magId "765252101" @default.
- W765252101 workType "dissertation" @default.