Matches in SemOpenAlex for { <https://semopenalex.org/work/W76530103> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W76530103 abstract "This work introduces the concept of deterministic annealing (DA) as a useful approach to clustering and other related optimization problems. It is strongly motivated by analogies to statistical physics, but is formally derived within information theory and probability theory. This approach enables escaping local optima that plague traditional techniques, without the extremely slow schedules typically required by stochastic methods. The clustering solutions obtained by DA are totally independent of the choice of initial configuration.A probabilistic framework is constructed, which is based on the principle of maximum entropy. The association probabilities at a given average distortion are Gibbs distributions parametrized by the corresponding Lagrange multiplier $beta$, which is inversely proportional to the temperature in the physical analogy. By computing marginal probabilities, an effective cost is obtained, which is minimized to find the most probable set of cluster representatives at a given temperature. This effective cost is the free energy in statistical mechanics, which is indeed optimized at isothermal, stochastic equilibrium.Within the probabilistic framework, annealing is introduced by controlling the Lagrange multiplier $beta$. This annealing is interpreted as gradually reducing the fuzziness of the associations. Phase transitions are identified in the process, which are, in fact, cluster splits. A sequence of phase transitions produces a hierarchy of fuzzy-clustering solutions. Critical $beta$ are computed exactly for the first phase transition and approximately for the following ones. Specific algorithms are derivable from the general approach, to address different aspects of clustering. From the experimental results it appears that DA is substantially superior to traditional techniques.The approach is extended to deal with a larger family of optimization problems that can be reformulated as constrained clustering. A probabilistic framework for constrained clustering is derived. Three examples are discussed. Mass-constrained clustering yields an improvement of the clustering procedure. The process is now independent of the number and multiplicities of representatives. The travelling salesman problem is reformulated as constrained clustering, yielding the elastic net approach. A second Lagrange multiplier is identified and is controlled in the process. Finally, this approach is suggested for self-organization of neural networks." @default.
- W76530103 created "2016-06-24" @default.
- W76530103 creator A5026459097 @default.
- W76530103 date "1991-05-01" @default.
- W76530103 modified "2023-09-28" @default.
- W76530103 title "Deterministic annealing, clustering, and optimization" @default.
- W76530103 doi "https://doi.org/10.7907/8n1r-3g60." @default.
- W76530103 hasPublicationYear "1991" @default.
- W76530103 type Work @default.
- W76530103 sameAs 76530103 @default.
- W76530103 citedByCount "16" @default.
- W76530103 countsByYear W765301032012 @default.
- W76530103 countsByYear W765301032013 @default.
- W76530103 countsByYear W765301032015 @default.
- W76530103 countsByYear W765301032016 @default.
- W76530103 countsByYear W765301032020 @default.
- W76530103 crossrefType "dissertation" @default.
- W76530103 hasAuthorship W76530103A5026459097 @default.
- W76530103 hasConcept C105795698 @default.
- W76530103 hasConcept C121332964 @default.
- W76530103 hasConcept C121864883 @default.
- W76530103 hasConcept C126255220 @default.
- W76530103 hasConcept C126980161 @default.
- W76530103 hasConcept C28826006 @default.
- W76530103 hasConcept C33923547 @default.
- W76530103 hasConcept C49937458 @default.
- W76530103 hasConcept C73555534 @default.
- W76530103 hasConcept C73684929 @default.
- W76530103 hasConcept C98763669 @default.
- W76530103 hasConceptScore W76530103C105795698 @default.
- W76530103 hasConceptScore W76530103C121332964 @default.
- W76530103 hasConceptScore W76530103C121864883 @default.
- W76530103 hasConceptScore W76530103C126255220 @default.
- W76530103 hasConceptScore W76530103C126980161 @default.
- W76530103 hasConceptScore W76530103C28826006 @default.
- W76530103 hasConceptScore W76530103C33923547 @default.
- W76530103 hasConceptScore W76530103C49937458 @default.
- W76530103 hasConceptScore W76530103C73555534 @default.
- W76530103 hasConceptScore W76530103C73684929 @default.
- W76530103 hasConceptScore W76530103C98763669 @default.
- W76530103 hasLocation W765301031 @default.
- W76530103 hasOpenAccess W76530103 @default.
- W76530103 hasPrimaryLocation W765301031 @default.
- W76530103 hasRelatedWork W1487792870 @default.
- W76530103 hasRelatedWork W1489095897 @default.
- W76530103 hasRelatedWork W1509562192 @default.
- W76530103 hasRelatedWork W1521430106 @default.
- W76530103 hasRelatedWork W1634005169 @default.
- W76530103 hasRelatedWork W2015013423 @default.
- W76530103 hasRelatedWork W2020999234 @default.
- W76530103 hasRelatedWork W2024060531 @default.
- W76530103 hasRelatedWork W2032558547 @default.
- W76530103 hasRelatedWork W2051752778 @default.
- W76530103 hasRelatedWork W2056760934 @default.
- W76530103 hasRelatedWork W2077085434 @default.
- W76530103 hasRelatedWork W2122350663 @default.
- W76530103 hasRelatedWork W2124776405 @default.
- W76530103 hasRelatedWork W2150593711 @default.
- W76530103 hasRelatedWork W2152151913 @default.
- W76530103 hasRelatedWork W2155024125 @default.
- W76530103 hasRelatedWork W2161877964 @default.
- W76530103 hasRelatedWork W2913066018 @default.
- W76530103 hasRelatedWork W3111753423 @default.
- W76530103 isParatext "false" @default.
- W76530103 isRetracted "false" @default.
- W76530103 magId "76530103" @default.
- W76530103 workType "dissertation" @default.