Matches in SemOpenAlex for { <https://semopenalex.org/work/W7657761> ?p ?o ?g. }
Showing items 1 to 64 of
64
with 100 items per page.
- W7657761 abstract "We estimate the expected value of various search quantities for a variety of graph-searching methods, for example depth-first search and breadth-first search. Our analysis applies to both directed and undirected random graphs, and it covers the range of interesting graph densities, including densities at which a random graph is disconnected with a giant connected component.We estimate the number of edges examined during the search, since this number is proportional to the running time of the algorithm. We find that for hardly connected graphs, all of the edges might be examined, but for denser graphs many fewer edges are generally required. We prove that any searching algorithm examines $Theta$($n$ log $n$) edges, if present, on all random graphs with $n$ nodes but not necessarily on the complete graphs.One property of some searching algorithms is the maximum depth of the search. In depth-first search, this depth can be used to estimate the space needed for the recursion stack. For random graphs of any density, even for disconnected graphs, we prove that this space is $Theta$($n$). On the other hand, the depth of breadth-first search is $Theta$(log $n$/log($pn$)), where $p$ is the probability of the existence of an edge. The size of the data structure needed by any searching algorithm is proved to be $Theta$($n$). If the search terminates at a particular node, any searching algorithm needs a data structure of size $Theta$($n$), and examines only $Theta$($n$) edges.Finally, we derive similar results for variants of the above searching algorithms, more general classes of searching algorithms, and for random graphs with multiple edges.These results are verified through simulations. The techniques employed to permit simulations of big graphs (few millions of nodes) and the results obtained are of general interest, especially to those performing similar experiments." @default.
- W7657761 created "2016-06-24" @default.
- W7657761 creator A5010503433 @default.
- W7657761 creator A5077370067 @default.
- W7657761 date "1990-01-01" @default.
- W7657761 modified "2023-09-24" @default.
- W7657761 title "Average case analysis of graph-searching algorithms" @default.
- W7657761 hasPublicationYear "1990" @default.
- W7657761 type Work @default.
- W7657761 sameAs 7657761 @default.
- W7657761 citedByCount "3" @default.
- W7657761 countsByYear W76577612017 @default.
- W7657761 crossrefType "journal-article" @default.
- W7657761 hasAuthorship W7657761A5010503433 @default.
- W7657761 hasAuthorship W7657761A5077370067 @default.
- W7657761 hasConcept C100107663 @default.
- W7657761 hasConcept C11413529 @default.
- W7657761 hasConcept C114614502 @default.
- W7657761 hasConcept C118615104 @default.
- W7657761 hasConcept C125583679 @default.
- W7657761 hasConcept C13251829 @default.
- W7657761 hasConcept C132525143 @default.
- W7657761 hasConcept C203776342 @default.
- W7657761 hasConcept C33923547 @default.
- W7657761 hasConcept C43517604 @default.
- W7657761 hasConcept C47458327 @default.
- W7657761 hasConceptScore W7657761C100107663 @default.
- W7657761 hasConceptScore W7657761C11413529 @default.
- W7657761 hasConceptScore W7657761C114614502 @default.
- W7657761 hasConceptScore W7657761C118615104 @default.
- W7657761 hasConceptScore W7657761C125583679 @default.
- W7657761 hasConceptScore W7657761C13251829 @default.
- W7657761 hasConceptScore W7657761C132525143 @default.
- W7657761 hasConceptScore W7657761C203776342 @default.
- W7657761 hasConceptScore W7657761C33923547 @default.
- W7657761 hasConceptScore W7657761C43517604 @default.
- W7657761 hasConceptScore W7657761C47458327 @default.
- W7657761 hasLocation W76577611 @default.
- W7657761 hasOpenAccess W7657761 @default.
- W7657761 hasPrimaryLocation W76577611 @default.
- W7657761 hasRelatedWork W1492991846 @default.
- W7657761 hasRelatedWork W1985522690 @default.
- W7657761 hasRelatedWork W2033718639 @default.
- W7657761 hasRelatedWork W2097147952 @default.
- W7657761 hasRelatedWork W2117654656 @default.
- W7657761 hasRelatedWork W2122528004 @default.
- W7657761 hasRelatedWork W2154520530 @default.
- W7657761 hasRelatedWork W2159595426 @default.
- W7657761 hasRelatedWork W2270527057 @default.
- W7657761 hasRelatedWork W2395179387 @default.
- W7657761 hasRelatedWork W2796243516 @default.
- W7657761 hasRelatedWork W2885321421 @default.
- W7657761 hasRelatedWork W2910267792 @default.
- W7657761 hasRelatedWork W2914071196 @default.
- W7657761 hasRelatedWork W2963161417 @default.
- W7657761 hasRelatedWork W2979534437 @default.
- W7657761 hasRelatedWork W3037447491 @default.
- W7657761 hasRelatedWork W3165096249 @default.
- W7657761 hasRelatedWork W3174154251 @default.
- W7657761 hasRelatedWork W653091471 @default.
- W7657761 isParatext "false" @default.
- W7657761 isRetracted "false" @default.
- W7657761 magId "7657761" @default.
- W7657761 workType "article" @default.