Matches in SemOpenAlex for { <https://semopenalex.org/work/W765860925> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W765860925 abstract "Extreme value theory is about the distributions of very large or very small values in a time series or stochastic process. This has numerous applications connected with environmental science, civil engineering, materials science and insurance. A rather recent approach for modelling extreme events is the so called peak over threshold (POT) method. The generalised Pareto distribution (GPD) is a two-parameter family of distributions which can be used to model exceedances over a threshold. This thesis consists of three papers. The main focus is on some theoretical and applied statistical issues of univariate and multivariate extreme value modelling. In the first paper we compare the empirical coverage of standard bootstrap and likelihood-based confidence intervals for the parameters and 90%-quantile of the GPD. By applying a general method of D.~N.~Lawley, small sample correction factors for likelihood ratio statistics of the parameters and quantiles of the GPD have been calculated. The article also investigates the performance of some bootstrap methods for estimation of accuracy measures of maximum likelihood estimators of parameters and quantiles of the GPD. In the second paper we give a multivariate analogue of the GPD and consider estimation of parameters in some specific bivariate generalised Pareto distributions (BGPD's). We generalise two of existing bivariate extreme value distributions and study maximum likelihood estimation of parameters in the corresponding BGPD's. The procedure is illustrated with an application to a bivariate series of wind data. The main interest in the thesis has been on practicality of the methods so when a new method has been developed, it's performance has been studied with the help of both real life data and simulations. In the third paper we use three previous articles as examples to illustrate difficulties which might arise in application of the theory and methods which may be used to solve them. A common theme in these articles is univariate and multivariate generalised Pareto distributions. However, the discussed problems are of a rather general nature and demonstrate some typical tasks in applied statistical research. We also discuss a general approach to design and implementation of statistical computations." @default.
- W765860925 created "2016-06-24" @default.
- W765860925 creator A5017403634 @default.
- W765860925 date "1996-01-01" @default.
- W765860925 modified "2023-09-27" @default.
- W765860925 title "Characterisation and Some Statistical Aspects of Univariate and Multivariate Generalise d Pareto Distributions" @default.
- W765860925 hasPublicationYear "1996" @default.
- W765860925 type Work @default.
- W765860925 sameAs 765860925 @default.
- W765860925 citedByCount "5" @default.
- W765860925 countsByYear W7658609252015 @default.
- W765860925 countsByYear W7658609252018 @default.
- W765860925 crossrefType "dissertation" @default.
- W765860925 hasAuthorship W765860925A5017403634 @default.
- W765860925 hasConcept C105795698 @default.
- W765860925 hasConcept C118671147 @default.
- W765860925 hasConcept C129848803 @default.
- W765860925 hasConcept C133514767 @default.
- W765860925 hasConcept C137635306 @default.
- W765860925 hasConcept C147581598 @default.
- W765860925 hasConcept C149782125 @default.
- W765860925 hasConcept C161584116 @default.
- W765860925 hasConcept C169707849 @default.
- W765860925 hasConcept C185429906 @default.
- W765860925 hasConcept C190373308 @default.
- W765860925 hasConcept C199163554 @default.
- W765860925 hasConcept C33923547 @default.
- W765860925 hasConcept C64341305 @default.
- W765860925 hasConceptScore W765860925C105795698 @default.
- W765860925 hasConceptScore W765860925C118671147 @default.
- W765860925 hasConceptScore W765860925C129848803 @default.
- W765860925 hasConceptScore W765860925C133514767 @default.
- W765860925 hasConceptScore W765860925C137635306 @default.
- W765860925 hasConceptScore W765860925C147581598 @default.
- W765860925 hasConceptScore W765860925C149782125 @default.
- W765860925 hasConceptScore W765860925C161584116 @default.
- W765860925 hasConceptScore W765860925C169707849 @default.
- W765860925 hasConceptScore W765860925C185429906 @default.
- W765860925 hasConceptScore W765860925C190373308 @default.
- W765860925 hasConceptScore W765860925C199163554 @default.
- W765860925 hasConceptScore W765860925C33923547 @default.
- W765860925 hasConceptScore W765860925C64341305 @default.
- W765860925 hasLocation W7658609251 @default.
- W765860925 hasOpenAccess W765860925 @default.
- W765860925 hasPrimaryLocation W7658609251 @default.
- W765860925 hasRelatedWork W1500657154 @default.
- W765860925 hasRelatedWork W1598342322 @default.
- W765860925 hasRelatedWork W1607386533 @default.
- W765860925 hasRelatedWork W174754410 @default.
- W765860925 hasRelatedWork W1909914973 @default.
- W765860925 hasRelatedWork W2014569459 @default.
- W765860925 hasRelatedWork W2021424300 @default.
- W765860925 hasRelatedWork W2036983007 @default.
- W765860925 hasRelatedWork W2041083914 @default.
- W765860925 hasRelatedWork W2057721021 @default.
- W765860925 hasRelatedWork W2060867775 @default.
- W765860925 hasRelatedWork W206526326 @default.
- W765860925 hasRelatedWork W2112944208 @default.
- W765860925 hasRelatedWork W2119956141 @default.
- W765860925 hasRelatedWork W2164074834 @default.
- W765860925 hasRelatedWork W2328265659 @default.
- W765860925 hasRelatedWork W2611918680 @default.
- W765860925 hasRelatedWork W2884480441 @default.
- W765860925 hasRelatedWork W2951229401 @default.
- W765860925 hasRelatedWork W3039533909 @default.
- W765860925 isParatext "false" @default.
- W765860925 isRetracted "false" @default.
- W765860925 magId "765860925" @default.
- W765860925 workType "dissertation" @default.