Matches in SemOpenAlex for { <https://semopenalex.org/work/W766931091> ?p ?o ?g. }
- W766931091 endingPage "560" @default.
- W766931091 startingPage "526" @default.
- W766931091 abstract "Recently, Zayernouri and Karniadakis in (2013) 78 investigated two classes of fractional Sturm-Liouville eigenvalue problems on compact interval a , b in more detail. They were the first authors who not only obtained some explicit forms for the eigensolutions of these problems but also derived some useful spectral properties of the obtained eigensolutions. Until now, to the best of our knowledge, fractional Sturm-Liouville eigenvalue problems on non-compact interval, such as 0 , + ∞ ) are not analyzed. So, our aim in this paper is to study these problems in detail. To do so, we study at first fractional Sturm-Liouville operators (FSLOs) of the confluent hypergeometric differential equations of the first kind and then two special cases of FSLOs: FSLOs-1 and FSLOs-2 are considered. After this, we obtain the analytical eigenfunctions for the cases and investigate the spectral properties of eigenfunctions and their corresponding eigenvalues. Also, we derive two fractional types of the associated Laguerre differential equations. Due to the non-polynomial nature of the eigenfunctions obtained from the two fractional associated Laguerre differential equations, they are defined as generalized associated Laguerre functions of the first and second kinds, GALFs-1 and GALFs-2. Furthermore, we prove that these fractional Sturm-Liouville operators are self-adjoint and the obtained eigenvalues are all real, the corresponding eigenfunctions are orthogonal with respect to the weight function associated to FSLOs-1 and FSLOs-2 and form two sets of non-polynomial bases. At the end, two new quadrature rules and L 2 -orthogonal projections with respect to and based on GALFs-1 and GALFs-2 are introduced. The upper bounds of the truncation errors of these new orthogonal projections according to some prescribed norm are proved and then verified numerically with some test examples. Finally, some fractional differential equations are provided and analyzed numerically." @default.
- W766931091 created "2016-06-24" @default.
- W766931091 creator A5001778077 @default.
- W766931091 creator A5031255283 @default.
- W766931091 creator A5044309986 @default.
- W766931091 date "2015-10-01" @default.
- W766931091 modified "2023-10-14" @default.
- W766931091 title "Fractional Sturm–Liouville boundary value problems in unbounded domains: Theory and applications" @default.
- W766931091 cites W1559244587 @default.
- W766931091 cites W1969446688 @default.
- W766931091 cites W1974267666 @default.
- W766931091 cites W1975383112 @default.
- W766931091 cites W1975765037 @default.
- W766931091 cites W1983026806 @default.
- W766931091 cites W1986915637 @default.
- W766931091 cites W1992614405 @default.
- W766931091 cites W1995813948 @default.
- W766931091 cites W1998819932 @default.
- W766931091 cites W2000009742 @default.
- W766931091 cites W2013389730 @default.
- W766931091 cites W2015058218 @default.
- W766931091 cites W2022053593 @default.
- W766931091 cites W2023766557 @default.
- W766931091 cites W2027205768 @default.
- W766931091 cites W2028420334 @default.
- W766931091 cites W2030323857 @default.
- W766931091 cites W2032521508 @default.
- W766931091 cites W2040558735 @default.
- W766931091 cites W2043095423 @default.
- W766931091 cites W2046582724 @default.
- W766931091 cites W2050835681 @default.
- W766931091 cites W2054358381 @default.
- W766931091 cites W2056025895 @default.
- W766931091 cites W2062650267 @default.
- W766931091 cites W2065254635 @default.
- W766931091 cites W2070694099 @default.
- W766931091 cites W2071593170 @default.
- W766931091 cites W2072857848 @default.
- W766931091 cites W2072995473 @default.
- W766931091 cites W2076005793 @default.
- W766931091 cites W2080109200 @default.
- W766931091 cites W2080296395 @default.
- W766931091 cites W2082817084 @default.
- W766931091 cites W2083559699 @default.
- W766931091 cites W2093225350 @default.
- W766931091 cites W2105433369 @default.
- W766931091 cites W2109183118 @default.
- W766931091 cites W2118288723 @default.
- W766931091 cites W2130538136 @default.
- W766931091 cites W2132795204 @default.
- W766931091 cites W2132997731 @default.
- W766931091 cites W2134603324 @default.
- W766931091 cites W2139216213 @default.
- W766931091 cites W2163007098 @default.
- W766931091 cites W2168072551 @default.
- W766931091 cites W2962785683 @default.
- W766931091 cites W74497607 @default.
- W766931091 doi "https://doi.org/10.1016/j.jcp.2015.06.030" @default.
- W766931091 hasPublicationYear "2015" @default.
- W766931091 type Work @default.
- W766931091 sameAs 766931091 @default.
- W766931091 citedByCount "59" @default.
- W766931091 countsByYear W7669310912016 @default.
- W766931091 countsByYear W7669310912017 @default.
- W766931091 countsByYear W7669310912018 @default.
- W766931091 countsByYear W7669310912019 @default.
- W766931091 countsByYear W7669310912020 @default.
- W766931091 countsByYear W7669310912021 @default.
- W766931091 countsByYear W7669310912022 @default.
- W766931091 countsByYear W7669310912023 @default.
- W766931091 crossrefType "journal-article" @default.
- W766931091 hasAuthorship W766931091A5001778077 @default.
- W766931091 hasAuthorship W766931091A5031255283 @default.
- W766931091 hasAuthorship W766931091A5044309986 @default.
- W766931091 hasConcept C105795698 @default.
- W766931091 hasConcept C134306372 @default.
- W766931091 hasConcept C154249771 @default.
- W766931091 hasConcept C182310444 @default.
- W766931091 hasConcept C22892174 @default.
- W766931091 hasConcept C2776291640 @default.
- W766931091 hasConcept C28826006 @default.
- W766931091 hasConcept C33923547 @default.
- W766931091 hasConceptScore W766931091C105795698 @default.
- W766931091 hasConceptScore W766931091C134306372 @default.
- W766931091 hasConceptScore W766931091C154249771 @default.
- W766931091 hasConceptScore W766931091C182310444 @default.
- W766931091 hasConceptScore W766931091C22892174 @default.
- W766931091 hasConceptScore W766931091C2776291640 @default.
- W766931091 hasConceptScore W766931091C28826006 @default.
- W766931091 hasConceptScore W766931091C33923547 @default.
- W766931091 hasLocation W7669310911 @default.
- W766931091 hasOpenAccess W766931091 @default.
- W766931091 hasPrimaryLocation W7669310911 @default.
- W766931091 hasRelatedWork W1968349713 @default.
- W766931091 hasRelatedWork W2031094851 @default.
- W766931091 hasRelatedWork W2043187987 @default.
- W766931091 hasRelatedWork W2070132034 @default.
- W766931091 hasRelatedWork W2070364225 @default.