Matches in SemOpenAlex for { <https://semopenalex.org/work/W76897483> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W76897483 endingPage "532" @default.
- W76897483 startingPage "521" @default.
- W76897483 abstract "Missing value estimation is a fundamental task in machine learning and data mining. It is not only used as a preprocessing step in data analysis, but also serves important purposes such as recommendation. Matrix factorization with low-rank assumption is a basic tool for missing value estimation. However, existing matrix factorization methods cannot be applied directly to such cases where some parts of the data are observed as aggregated values of several features in high-level categories. In this paper, we propose a new problem of restoring original micro observations from aggregated observations, and we give formulations and efficient solutions to the problem by extending the ordinary matrix factorization model. Experiments using synthetic and real data sets show that the proposed method outperforms several baseline methods." @default.
- W76897483 created "2016-06-24" @default.
- W76897483 creator A5025814897 @default.
- W76897483 creator A5031707680 @default.
- W76897483 date "2013-01-01" @default.
- W76897483 modified "2023-10-01" @default.
- W76897483 title "Matrix Factorization With Aggregated Observations" @default.
- W76897483 cites W1598553907 @default.
- W76897483 cites W1988176704 @default.
- W76897483 cites W2004026774 @default.
- W76897483 cites W2054141820 @default.
- W76897483 cites W2110121428 @default.
- W76897483 cites W2134332047 @default.
- W76897483 cites W4231990774 @default.
- W76897483 doi "https://doi.org/10.1007/978-3-642-37456-2_44" @default.
- W76897483 hasPublicationYear "2013" @default.
- W76897483 type Work @default.
- W76897483 sameAs 76897483 @default.
- W76897483 citedByCount "1" @default.
- W76897483 countsByYear W768974832015 @default.
- W76897483 crossrefType "book-chapter" @default.
- W76897483 hasAuthorship W76897483A5025814897 @default.
- W76897483 hasAuthorship W76897483A5031707680 @default.
- W76897483 hasConcept C10551718 @default.
- W76897483 hasConcept C106487976 @default.
- W76897483 hasConcept C11413529 @default.
- W76897483 hasConcept C114614502 @default.
- W76897483 hasConcept C119857082 @default.
- W76897483 hasConcept C121332964 @default.
- W76897483 hasConcept C124101348 @default.
- W76897483 hasConcept C153180895 @default.
- W76897483 hasConcept C154945302 @default.
- W76897483 hasConcept C158693339 @default.
- W76897483 hasConcept C159985019 @default.
- W76897483 hasConcept C160920958 @default.
- W76897483 hasConcept C164226766 @default.
- W76897483 hasConcept C187834632 @default.
- W76897483 hasConcept C192562407 @default.
- W76897483 hasConcept C33923547 @default.
- W76897483 hasConcept C34736171 @default.
- W76897483 hasConcept C41008148 @default.
- W76897483 hasConcept C42355184 @default.
- W76897483 hasConcept C62520636 @default.
- W76897483 hasConcept C9357733 @default.
- W76897483 hasConceptScore W76897483C10551718 @default.
- W76897483 hasConceptScore W76897483C106487976 @default.
- W76897483 hasConceptScore W76897483C11413529 @default.
- W76897483 hasConceptScore W76897483C114614502 @default.
- W76897483 hasConceptScore W76897483C119857082 @default.
- W76897483 hasConceptScore W76897483C121332964 @default.
- W76897483 hasConceptScore W76897483C124101348 @default.
- W76897483 hasConceptScore W76897483C153180895 @default.
- W76897483 hasConceptScore W76897483C154945302 @default.
- W76897483 hasConceptScore W76897483C158693339 @default.
- W76897483 hasConceptScore W76897483C159985019 @default.
- W76897483 hasConceptScore W76897483C160920958 @default.
- W76897483 hasConceptScore W76897483C164226766 @default.
- W76897483 hasConceptScore W76897483C187834632 @default.
- W76897483 hasConceptScore W76897483C192562407 @default.
- W76897483 hasConceptScore W76897483C33923547 @default.
- W76897483 hasConceptScore W76897483C34736171 @default.
- W76897483 hasConceptScore W76897483C41008148 @default.
- W76897483 hasConceptScore W76897483C42355184 @default.
- W76897483 hasConceptScore W76897483C62520636 @default.
- W76897483 hasConceptScore W76897483C9357733 @default.
- W76897483 hasLocation W768974831 @default.
- W76897483 hasOpenAccess W76897483 @default.
- W76897483 hasPrimaryLocation W768974831 @default.
- W76897483 hasRelatedWork W2022884247 @default.
- W76897483 hasRelatedWork W2091530068 @default.
- W76897483 hasRelatedWork W2263184620 @default.
- W76897483 hasRelatedWork W2551063014 @default.
- W76897483 hasRelatedWork W2807600438 @default.
- W76897483 hasRelatedWork W3086422166 @default.
- W76897483 hasRelatedWork W3092506759 @default.
- W76897483 hasRelatedWork W31185250 @default.
- W76897483 hasRelatedWork W3209583484 @default.
- W76897483 hasRelatedWork W4237962661 @default.
- W76897483 isParatext "false" @default.
- W76897483 isRetracted "false" @default.
- W76897483 magId "76897483" @default.
- W76897483 workType "book-chapter" @default.