Matches in SemOpenAlex for { <https://semopenalex.org/work/W770876758> ?p ?o ?g. }
- W770876758 abstract "In this thesis we address problems related to the verification of software-based systems. We aremostly interested in the (safe) design of decision procedures used in verification. In addition, we alsoconsider a modularity problem for a modeling language used in the Why verification platform.Many verification problems can be reduced to a satisfiability problem modulo theories (SMT). In orderto build satisfiability procedures Armando et al. have proposed in 2001 an approach based on rewriting.This approach uses a general calculus for equational reasoning named paramodulation. In general, afair and exhaustive application of the rules of paramodulation calculus (PC) leads to a semi-decisionprocedure that halts on unsatisfiable inputs (the empty clause is then generated) but may diverge onsatisfiable ones. Fortunately, it may also terminate for some theories of interest in verification, and thusit becomes a decision procedure. To reason on the paramodulation calculus, a schematic paramodulationcalculus (SPC) has been studied, notably to automatically prove decidability of single theories and oftheir combinations. The advantage of SPC is that if it halts for one given abstract input, then PC haltsfor all the corresponding concrete inputs. More generally, SPC is an automated tool to check propertiesof PC like termination, stable infiniteness and deduction completeness.A major contribution of this thesis is a prototyping environment for designing and verifying decisionprocedures. This environment, based on the theoretical studies, is the first implementation of theschematic paramodulation calculus. It has been implemented from scratch on the firm basis provided bythe Maude system based on rewriting logic. We show that this prototype is very useful to derive decidabilityand combinability of theories of practical interest in verification. It helps testing new saturationstrategies and experimenting new extensions of the original (schematic) paramodulation calculus.This environment has been applied for the design of a schematic paramodulation calculus dedicated tothe theory of Integer Offsets. This contribution is the first extension of the notion of schematic paramodulationto a built-in theory. This study has led to new automatic proof techniques that are different fromthose performed manually in the literature. The assumptions to apply our proof techniques are easyto satisfy for equational theories with counting operators. We illustrate our theoretical contribution ontheories representing extensions of classical data structures such as lists and records.We have also addressed the problem of modular specification of generic Java classes and methods.We propose extensions to the Krakatoa Modeling Language, a part of the Why platform for provingthat a Java or C program is a correct implementation of some specification. The key features arethe introduction of parametricity both for types and for theories and an instantiation relation betweentheories. The proposed extensions are illustrated on two significant examples: the specification of thegeneric method for sorting arrays and for generic hash map.Both problems considered in this thesis are related to SMT solvers. Firstly, decision procedures areat the core of SMT solvers. Secondly, the Why platform extracts verification conditions from a sourceprogram annotated by specifications, and then transmits them to SMT solvers or proof assistants to checkthe program correctness." @default.
- W770876758 created "2016-06-24" @default.
- W770876758 creator A5074985823 @default.
- W770876758 date "2013-07-19" @default.
- W770876758 modified "2023-09-28" @default.
- W770876758 title "Schematic calculi for the analysis of decision procedures" @default.
- W770876758 cites W1479669713 @default.
- W770876758 cites W1494888826 @default.
- W770876758 cites W1496607686 @default.
- W770876758 cites W1500141485 @default.
- W770876758 cites W1501719149 @default.
- W770876758 cites W1501904174 @default.
- W770876758 cites W1507112684 @default.
- W770876758 cites W1511737804 @default.
- W770876758 cites W1516900991 @default.
- W770876758 cites W1519551513 @default.
- W770876758 cites W1532097571 @default.
- W770876758 cites W1532452539 @default.
- W770876758 cites W1539343435 @default.
- W770876758 cites W1539567407 @default.
- W770876758 cites W1558115254 @default.
- W770876758 cites W1559870885 @default.
- W770876758 cites W1560253649 @default.
- W770876758 cites W1581943269 @default.
- W770876758 cites W1583295953 @default.
- W770876758 cites W1583912692 @default.
- W770876758 cites W1587641948 @default.
- W770876758 cites W1606152849 @default.
- W770876758 cites W1716633099 @default.
- W770876758 cites W1780472831 @default.
- W770876758 cites W180134343 @default.
- W770876758 cites W184671686 @default.
- W770876758 cites W193668645 @default.
- W770876758 cites W1964830323 @default.
- W770876758 cites W1966048066 @default.
- W770876758 cites W1979528481 @default.
- W770876758 cites W1994486216 @default.
- W770876758 cites W1998734164 @default.
- W770876758 cites W2017500299 @default.
- W770876758 cites W2043314428 @default.
- W770876758 cites W2045721873 @default.
- W770876758 cites W2051518991 @default.
- W770876758 cites W206056444 @default.
- W770876758 cites W2067259733 @default.
- W770876758 cites W2077429176 @default.
- W770876758 cites W2084417024 @default.
- W770876758 cites W2086747974 @default.
- W770876758 cites W2100738443 @default.
- W770876758 cites W2104169671 @default.
- W770876758 cites W2109879514 @default.
- W770876758 cites W2116518308 @default.
- W770876758 cites W2117207972 @default.
- W770876758 cites W2125573666 @default.
- W770876758 cites W2131954800 @default.
- W770876758 cites W2144973245 @default.
- W770876758 cites W2154032363 @default.
- W770876758 cites W2156915267 @default.
- W770876758 cites W2161853982 @default.
- W770876758 cites W2164778826 @default.
- W770876758 cites W2167699088 @default.
- W770876758 cites W2169235184 @default.
- W770876758 cites W2294957387 @default.
- W770876758 cites W2401903124 @default.
- W770876758 cites W2912818154 @default.
- W770876758 cites W45564141 @default.
- W770876758 cites W2585339290 @default.
- W770876758 cites W3203954530 @default.
- W770876758 hasPublicationYear "2013" @default.
- W770876758 type Work @default.
- W770876758 sameAs 770876758 @default.
- W770876758 citedByCount "1" @default.
- W770876758 countsByYear W7708767582015 @default.
- W770876758 crossrefType "dissertation" @default.
- W770876758 hasAuthorship W770876758A5074985823 @default.
- W770876758 hasConcept C110251889 @default.
- W770876758 hasConcept C11413529 @default.
- W770876758 hasConcept C118615104 @default.
- W770876758 hasConcept C127413603 @default.
- W770876758 hasConcept C134306372 @default.
- W770876758 hasConcept C153269930 @default.
- W770876758 hasConcept C154690210 @default.
- W770876758 hasConcept C168773769 @default.
- W770876758 hasConcept C17231256 @default.
- W770876758 hasConcept C192328126 @default.
- W770876758 hasConcept C199343813 @default.
- W770876758 hasConcept C199360897 @default.
- W770876758 hasConcept C24326235 @default.
- W770876758 hasConcept C2777686260 @default.
- W770876758 hasConcept C33923547 @default.
- W770876758 hasConcept C41008148 @default.
- W770876758 hasConcept C54732982 @default.
- W770876758 hasConcept C71924100 @default.
- W770876758 hasConcept C80444323 @default.
- W770876758 hasConceptScore W770876758C110251889 @default.
- W770876758 hasConceptScore W770876758C11413529 @default.
- W770876758 hasConceptScore W770876758C118615104 @default.
- W770876758 hasConceptScore W770876758C127413603 @default.
- W770876758 hasConceptScore W770876758C134306372 @default.
- W770876758 hasConceptScore W770876758C153269930 @default.
- W770876758 hasConceptScore W770876758C154690210 @default.