Matches in SemOpenAlex for { <https://semopenalex.org/work/W77249322> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W77249322 abstract "PurposeRoad fleets’ profitability has been long correlated to fuel efficiency (McKinnon, 1993). In effect, fuelexpenditures are one of road transport operations’ biggest budgets (FBP, 2005) as well as an areawhere improvements are generally possible (Wilson, 1987). In order to improve vehicles’ fuelefficiency, fleet managers need methods which can accurately measure vehicles’ fuel performance.Regardless whether fuel information is obtained from fuel cards or vehicles’ electronic solutions suchas CANbus, fuel efficiency is generally measured in miles per gallons (mpg). Yet, mpg does notinclude all the factors necessary to its interpretation such as vehicle weight or age. Furthermore, otheraspects of fuel efficiency, such as fuel costs, are not directly reflected by mpg but instead by othermeasures such as pence per mile (ppm). These limitations can potentially lead to situations where avehicle can be mpg efficient but ppm inefficient (and vice versa) making it hard for fleet manager tounderstand how efficient their vehicles are. Thus there is a need for a method which can addressthese limitations. Data Envelopment Analysis (DEA) – an advanced benchmarking technique – canpotentially address these limitations. Thus, this paper will discuss an application of DEA to van fuelefficiency measurement.Research ApproachThe fuel efficiency DEA model originally included fuel volume, fuel cost, vehicle’s weight and vehicle’sage as inputs while mileage was the only output. The fuel information, obtained from fuel cardsrecords, was cleansed using a cleansing algorithm partly relying on telematics information. Anotheralgorithm was also used to appraise the volume used during the measurement period (the smoothingalgorithm). Data from three different companies’ fleets was used in this study.Findings and OriginalityThe results indicate that DEA can address mpg’s limitations while effectively measuring van fuelefficiency. No vehicle was found to be simultaneously mpg efficient and ppm inefficient (and viceversa); thus using either volume or cost, provided similar efficiency levels. Vehicle weight was kept inthe model as it proved to have a significant impact on fuel efficiency while age seemed to furthersegment the results in a way which fleet operators defined as incoherent with the notion of fuelefficiency. Vehicle age was thus excluded from the models. Results from the smoothing algorithmsuggest smoothing the volume used is indispensable when using fuel cards.Although DEA has been widely used in transport operations, the literature mainly concentrates onports or airports (Cullinane et al., 2006, SangHyun, 2009, Yoshida and Fujimoto, 2004, PestanaBarros and Dieke, 2007) rather than directly on road transport (Yang and Pollitt, 2009). Only a limitednumber of papers can be found dealing with the use of DEA to measure road operations efficiency(Hjalmarsson and Odeck, 1996, Odeck and Hjalmarsson, 1996, Kerstens, 1996, Cowie and Asenova,1999) and, except for this study, none could be found on van operations or fuel efficiencymeasurement. This lack of published research brings originality to this study.Research ImpactThis case study demonstrates that it is possible to use DEA to incorporate ‘vehicle weight’ in the fuelefficiency model in order to provide a better and more comparable vans’ fuel efficiency measure thanwith simple mpg measurement.Practical ImpactFleet operators understood the model results and appreciated the fact the measure incorporatedvehicle weight. However, the debriefing discussions seemed to indicate that fleet managers weremore concerned about spotting very bad drivers and fuel theft rather than accurate fuel efficiencymeasurement per se. These concerns were partially addressed by the fuel card data cleansing andsmoothing algorithm. Finally, recent success of driver competitions (Masternaut Three X, 2010) seemto indicate there is a latent need in the industry for accurate driver performance measurement whichsuggests that methods such as the one developed in this study could be of greater use in a nearfuture." @default.
- W77249322 created "2016-06-24" @default.
- W77249322 creator A5001618966 @default.
- W77249322 creator A5022239776 @default.
- W77249322 creator A5042614661 @default.
- W77249322 creator A5047657198 @default.
- W77249322 creator A5053519315 @default.
- W77249322 creator A5089182698 @default.
- W77249322 date "2010-08-01" @default.
- W77249322 modified "2023-09-26" @default.
- W77249322 title "Van Fuel Efficiency Measurement - A Successful Application of Data Envelopment Analysis" @default.
- W77249322 hasPublicationYear "2010" @default.
- W77249322 type Work @default.
- W77249322 sameAs 77249322 @default.
- W77249322 citedByCount "0" @default.
- W77249322 crossrefType "book-chapter" @default.
- W77249322 hasAuthorship W77249322A5001618966 @default.
- W77249322 hasAuthorship W77249322A5022239776 @default.
- W77249322 hasAuthorship W77249322A5042614661 @default.
- W77249322 hasAuthorship W77249322A5047657198 @default.
- W77249322 hasAuthorship W77249322A5053519315 @default.
- W77249322 hasAuthorship W77249322A5089182698 @default.
- W77249322 hasConcept C10138342 @default.
- W77249322 hasConcept C105795698 @default.
- W77249322 hasConcept C127413603 @default.
- W77249322 hasConcept C129361004 @default.
- W77249322 hasConcept C134560507 @default.
- W77249322 hasConcept C144133560 @default.
- W77249322 hasConcept C162324750 @default.
- W77249322 hasConcept C162853370 @default.
- W77249322 hasConcept C171146098 @default.
- W77249322 hasConcept C176217482 @default.
- W77249322 hasConcept C21547014 @default.
- W77249322 hasConcept C22088475 @default.
- W77249322 hasConcept C22212356 @default.
- W77249322 hasConcept C24756922 @default.
- W77249322 hasConcept C2777305159 @default.
- W77249322 hasConcept C33923547 @default.
- W77249322 hasConcept C41008148 @default.
- W77249322 hasConcept C42199009 @default.
- W77249322 hasConcept C42475967 @default.
- W77249322 hasConcept C45882903 @default.
- W77249322 hasConcept C76155785 @default.
- W77249322 hasConcept C86251818 @default.
- W77249322 hasConcept C89074322 @default.
- W77249322 hasConceptScore W77249322C10138342 @default.
- W77249322 hasConceptScore W77249322C105795698 @default.
- W77249322 hasConceptScore W77249322C127413603 @default.
- W77249322 hasConceptScore W77249322C129361004 @default.
- W77249322 hasConceptScore W77249322C134560507 @default.
- W77249322 hasConceptScore W77249322C144133560 @default.
- W77249322 hasConceptScore W77249322C162324750 @default.
- W77249322 hasConceptScore W77249322C162853370 @default.
- W77249322 hasConceptScore W77249322C171146098 @default.
- W77249322 hasConceptScore W77249322C176217482 @default.
- W77249322 hasConceptScore W77249322C21547014 @default.
- W77249322 hasConceptScore W77249322C22088475 @default.
- W77249322 hasConceptScore W77249322C22212356 @default.
- W77249322 hasConceptScore W77249322C24756922 @default.
- W77249322 hasConceptScore W77249322C2777305159 @default.
- W77249322 hasConceptScore W77249322C33923547 @default.
- W77249322 hasConceptScore W77249322C41008148 @default.
- W77249322 hasConceptScore W77249322C42199009 @default.
- W77249322 hasConceptScore W77249322C42475967 @default.
- W77249322 hasConceptScore W77249322C45882903 @default.
- W77249322 hasConceptScore W77249322C76155785 @default.
- W77249322 hasConceptScore W77249322C86251818 @default.
- W77249322 hasConceptScore W77249322C89074322 @default.
- W77249322 hasLocation W772493221 @default.
- W77249322 hasOpenAccess W77249322 @default.
- W77249322 hasPrimaryLocation W772493221 @default.
- W77249322 hasRelatedWork W1498423843 @default.
- W77249322 hasRelatedWork W1525035951 @default.
- W77249322 hasRelatedWork W2083285191 @default.
- W77249322 hasRelatedWork W2182264536 @default.
- W77249322 hasRelatedWork W2260020425 @default.
- W77249322 hasRelatedWork W2479698749 @default.
- W77249322 hasRelatedWork W2502340904 @default.
- W77249322 hasRelatedWork W2518220981 @default.
- W77249322 hasRelatedWork W2791298122 @default.
- W77249322 hasRelatedWork W2791489351 @default.
- W77249322 hasRelatedWork W2791710698 @default.
- W77249322 hasRelatedWork W2966771216 @default.
- W77249322 hasRelatedWork W2991643643 @default.
- W77249322 hasRelatedWork W3111069264 @default.
- W77249322 hasRelatedWork W3122918942 @default.
- W77249322 hasRelatedWork W3134047172 @default.
- W77249322 hasRelatedWork W562987927 @default.
- W77249322 hasRelatedWork W163495728 @default.
- W77249322 hasRelatedWork W2732914508 @default.
- W77249322 hasRelatedWork W2837090725 @default.
- W77249322 isParatext "false" @default.
- W77249322 isRetracted "false" @default.
- W77249322 magId "77249322" @default.
- W77249322 workType "book-chapter" @default.