Matches in SemOpenAlex for { <https://semopenalex.org/work/W772649510> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W772649510 endingPage "482" @default.
- W772649510 startingPage "472" @default.
- W772649510 abstract "We have recently worked out a method for building reliable predictive models from a data stream of real estate transactions which applies the ensembles of genetic fuzzy systems and neural networks. The method consists in building models over the chunks of a data stream determined by a sliding time window and enlarging gradually an ensemble by models generated in the course of time. The aged models are utilized to compose ensembles and their output is updated with trend functions reflecting the changes of prices in the market. In the paper we present the next series of extensive experiments to evaluate our method with the ensembles of artificial neural networks. We examine the impact of the number of aged models used to compose an ensemble on the accuracy and the influence of the degree of polynomial trend functions employed to modify the results on the performance of neural network ensembles. The experimental results were analysed using statistical approach embracing nonparametric tests followed by post-hoc procedures designed for multiple N×N comparisons." @default.
- W772649510 created "2016-06-24" @default.
- W772649510 creator A5033625848 @default.
- W772649510 creator A5037296779 @default.
- W772649510 creator A5046478476 @default.
- W772649510 creator A5062315901 @default.
- W772649510 date "2014-01-01" @default.
- W772649510 modified "2023-10-15" @default.
- W772649510 title "Evaluation of Neural Network Ensemble Approach to Predict from a Data Stream" @default.
- W772649510 cites W115522171 @default.
- W772649510 cites W13338109 @default.
- W772649510 cites W1481038561 @default.
- W772649510 cites W1498360258 @default.
- W772649510 cites W151152692 @default.
- W772649510 cites W1560167527 @default.
- W772649510 cites W1568659373 @default.
- W772649510 cites W1571238525 @default.
- W772649510 cites W1576993326 @default.
- W772649510 cites W1599858917 @default.
- W772649510 cites W2000454347 @default.
- W772649510 cites W2029952384 @default.
- W772649510 cites W2077654972 @default.
- W772649510 cites W2139327121 @default.
- W772649510 cites W2152161790 @default.
- W772649510 cites W23193062 @default.
- W772649510 cites W286572800 @default.
- W772649510 cites W87319928 @default.
- W772649510 doi "https://doi.org/10.1007/978-3-319-11289-3_48" @default.
- W772649510 hasPublicationYear "2014" @default.
- W772649510 type Work @default.
- W772649510 sameAs 772649510 @default.
- W772649510 citedByCount "8" @default.
- W772649510 countsByYear W7726495102015 @default.
- W772649510 countsByYear W7726495102017 @default.
- W772649510 countsByYear W7726495102018 @default.
- W772649510 countsByYear W7726495102020 @default.
- W772649510 crossrefType "book-chapter" @default.
- W772649510 hasAuthorship W772649510A5033625848 @default.
- W772649510 hasAuthorship W772649510A5037296779 @default.
- W772649510 hasAuthorship W772649510A5046478476 @default.
- W772649510 hasAuthorship W772649510A5062315901 @default.
- W772649510 hasConcept C102366305 @default.
- W772649510 hasConcept C102392041 @default.
- W772649510 hasConcept C111919701 @default.
- W772649510 hasConcept C119857082 @default.
- W772649510 hasConcept C124101348 @default.
- W772649510 hasConcept C143724316 @default.
- W772649510 hasConcept C149782125 @default.
- W772649510 hasConcept C151406439 @default.
- W772649510 hasConcept C151730666 @default.
- W772649510 hasConcept C154945302 @default.
- W772649510 hasConcept C2778484313 @default.
- W772649510 hasConcept C2778751112 @default.
- W772649510 hasConcept C33923547 @default.
- W772649510 hasConcept C41008148 @default.
- W772649510 hasConcept C50644808 @default.
- W772649510 hasConcept C76155785 @default.
- W772649510 hasConcept C86803240 @default.
- W772649510 hasConceptScore W772649510C102366305 @default.
- W772649510 hasConceptScore W772649510C102392041 @default.
- W772649510 hasConceptScore W772649510C111919701 @default.
- W772649510 hasConceptScore W772649510C119857082 @default.
- W772649510 hasConceptScore W772649510C124101348 @default.
- W772649510 hasConceptScore W772649510C143724316 @default.
- W772649510 hasConceptScore W772649510C149782125 @default.
- W772649510 hasConceptScore W772649510C151406439 @default.
- W772649510 hasConceptScore W772649510C151730666 @default.
- W772649510 hasConceptScore W772649510C154945302 @default.
- W772649510 hasConceptScore W772649510C2778484313 @default.
- W772649510 hasConceptScore W772649510C2778751112 @default.
- W772649510 hasConceptScore W772649510C33923547 @default.
- W772649510 hasConceptScore W772649510C41008148 @default.
- W772649510 hasConceptScore W772649510C50644808 @default.
- W772649510 hasConceptScore W772649510C76155785 @default.
- W772649510 hasConceptScore W772649510C86803240 @default.
- W772649510 hasLocation W7726495101 @default.
- W772649510 hasOpenAccess W772649510 @default.
- W772649510 hasPrimaryLocation W7726495101 @default.
- W772649510 hasRelatedWork W1984322677 @default.
- W772649510 hasRelatedWork W1999414040 @default.
- W772649510 hasRelatedWork W2032045966 @default.
- W772649510 hasRelatedWork W2141008330 @default.
- W772649510 hasRelatedWork W2357235357 @default.
- W772649510 hasRelatedWork W2363017932 @default.
- W772649510 hasRelatedWork W2365320428 @default.
- W772649510 hasRelatedWork W2365729238 @default.
- W772649510 hasRelatedWork W6445124 @default.
- W772649510 hasRelatedWork W2991818765 @default.
- W772649510 isParatext "false" @default.
- W772649510 isRetracted "false" @default.
- W772649510 magId "772649510" @default.
- W772649510 workType "book-chapter" @default.