Matches in SemOpenAlex for { <https://semopenalex.org/work/W77274564> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W77274564 abstract "Inversion of Rayleigh-wave dispersion curve is realized using the adaptive simulated annealing (ASA) method. Instead of using uniform probability distributions, ASA uses the Ingber generation probability distribution. This distribution justifies an exponential temperature annealing schedule in perturbing models and guarantees the convergence of the algorithm. The exponential decrease of temperature leads to a quick finding of the global minimum. Tests on both real and synthetic Rayleigh dispersion data sets indicate that our ASA optimization is accurate. Introduction Shallow shear velocity structure is very important for seismic design of engineered structures and facilities. Recent building codes in both Canada (National Building Code of Canada) and the United States (BSSC 2000) are closely reliant on measurements of shallow shear-velocity structure at building sites. Seismic hazard evaluation of a region, comprehensive earthquake preparedness, and development of the national seismic hazard map also benefit from the local shallow shear velocity structure at large numbers of sites. Several techniques have been used to successfully estimate the dispersion curve of the surface waves contained in microtremors (e.g., Horike 1985; Liu et al. 2000). The refraction microtremor (ReMi) technique (Louie 2001) has been widely applied both commercially (through SeisOpt ReMiTM from Optim Inc.) and in research (Scott et al. 2004; Stephenson et al. 2005) to produce reliable dispersion curves. Commercial ReMi software yields a local 1-D shearvelocity structure by manually forward-modeling a dispersion curve picked from ReMi data. The modeling, however, has to be done by several practitioners to avoid human bias. An accurate and automatic inversion method is needed to quickly generate shallow shear-wave velocity profiles without bias. Adaptive simulated annealing (ASA) optimization is an effective alternative. Unlike linear inversion, simulated annealing (SA) is a directed Monte Carlo inversion method for 1 Grad. Research Asst., Nevada Seismological Lab., Univ. of Nevada, Reno, NV 89557; donghong@seismo.unr.edu 2 Vice President, Optim Inc., Reno, NV; satish@optimsoftware.com 3 Assoc. Professor, Nevada Seismological Lab., University of Nevada, Reno, NV 89557 finding the global minimum of a non-linear error function. Luke et al. (2003) showed that linear inversion yields excellent dispersion results for simple profiles; however, for more complex profiles multiple solutions with equally good data fits are possible. SA has been successfully used in many geophysical inverse problems (Pullammanappallil and Louie 1993, 1994; Sen and Stoffa 1996; Martinez et al. 2000; Beaty et al. 2002) since the work of Metropolis et al. (1953) and of Kirkpatrick et al. (1983). However, SA is quite time-consuming in finding an optimal fit, and it is difficult to fine tune to specific problems, relative to other fitting techniques (Ingber 1993). Instead of using a uniform distribution to perturb models, ASA uses the Ingber generation probability distribution, which then justifies an exponential temperature-annealing schedule. The exponential decrease guarantees the convergence of the algorithm, leading to quick convergence at the global minimum (Ingber 1993). Inverse theory The concept of the simulated annealing (SA) is based on the manner in which liquids freeze or metals re-crystallize in the process of annealing. In an annealing process a melt, initially at high temperature T and disordered, is slowly cooled so that the system at any time is approximately in thermodynamic equilibrium. As cooling proceeds, the system becomes more ordered and approaches a ground state at T=0. Hence the process can be thought of as an adiabatic approach to the lowest energy state. If the initial temperature of the system is too low or cooling is done insufficiently slowly the system may become quenched forming defects or freezing out in metastable states (ie. trapped in a local minimum energy state). Metropolis et. al. (1953) introduced the SA algorithm for simulating the evolution of a solid in a heat bath to thermal equilibrium. His original scheme was that an initial state of a thermodynamic system was chosen at energy E and temperature T. Holding T constant the initial configuration is perturbed and the change in energy ∆E is computed. If the change in energy is negative the new configuration is accepted. If the change in energy is positive it is accepted with a probability given by the Boltzmann factor exp(-∆E/T). This processes is then repeated sufficient times to give good sampling statistics for the current temperature, and then the temperature is decremented and the entire process repeated until a frozen state is achieved. By analogy the generalization of this Monte Carlo approach to inversion of dispersion curve is straight forward. The current state of the thermodynamic system is analogous to the calculated phase velocities based on the current model m which involves the Pand S-wave velocities, thickness, and density of each layer. The energy of the thermodynamic system is analogous to the least-square error E of the calculated and observed phase velocities, defined as" @default.
- W77274564 created "2016-06-24" @default.
- W77274564 creator A5003374796 @default.
- W77274564 creator A5066148225 @default.
- W77274564 creator A5067955956 @default.
- W77274564 date "2005-12-01" @default.
- W77274564 modified "2023-09-24" @default.
- W77274564 title "Adaptive Simulated Annealing Velocity Modeling for Rayleigh Wave Dispersion" @default.
- W77274564 cites W1538120041 @default.
- W77274564 cites W1579868249 @default.
- W77274564 cites W2004883604 @default.
- W77274564 cites W2006338895 @default.
- W77274564 cites W2011943425 @default.
- W77274564 cites W2020999234 @default.
- W77274564 cites W2024060531 @default.
- W77274564 cites W2029709686 @default.
- W77274564 cites W2056760934 @default.
- W77274564 cites W2062256719 @default.
- W77274564 cites W2071695384 @default.
- W77274564 cites W2103726382 @default.
- W77274564 cites W2109717268 @default.
- W77274564 cites W2109874633 @default.
- W77274564 cites W2133526188 @default.
- W77274564 cites W2134980375 @default.
- W77274564 cites W2165036941 @default.
- W77274564 cites W2165403257 @default.
- W77274564 cites W2500155886 @default.
- W77274564 cites W2570419577 @default.
- W77274564 cites W3140895391 @default.
- W77274564 hasPublicationYear "2005" @default.
- W77274564 type Work @default.
- W77274564 sameAs 77274564 @default.
- W77274564 citedByCount "0" @default.
- W77274564 crossrefType "journal-article" @default.
- W77274564 hasAuthorship W77274564A5003374796 @default.
- W77274564 hasAuthorship W77274564A5066148225 @default.
- W77274564 hasAuthorship W77274564A5067955956 @default.
- W77274564 hasConcept C11413529 @default.
- W77274564 hasConcept C126980161 @default.
- W77274564 hasConcept C127313418 @default.
- W77274564 hasConcept C165205528 @default.
- W77274564 hasConcept C41008148 @default.
- W77274564 hasConcept C51473458 @default.
- W77274564 hasConcept C69361100 @default.
- W77274564 hasConcept C76155785 @default.
- W77274564 hasConcept C84174578 @default.
- W77274564 hasConceptScore W77274564C11413529 @default.
- W77274564 hasConceptScore W77274564C126980161 @default.
- W77274564 hasConceptScore W77274564C127313418 @default.
- W77274564 hasConceptScore W77274564C165205528 @default.
- W77274564 hasConceptScore W77274564C41008148 @default.
- W77274564 hasConceptScore W77274564C51473458 @default.
- W77274564 hasConceptScore W77274564C69361100 @default.
- W77274564 hasConceptScore W77274564C76155785 @default.
- W77274564 hasConceptScore W77274564C84174578 @default.
- W77274564 hasLocation W772745641 @default.
- W77274564 hasOpenAccess W77274564 @default.
- W77274564 hasPrimaryLocation W772745641 @default.
- W77274564 hasRelatedWork W1968537227 @default.
- W77274564 hasRelatedWork W1999028224 @default.
- W77274564 hasRelatedWork W2043282761 @default.
- W77274564 hasRelatedWork W2138899540 @default.
- W77274564 hasRelatedWork W2476296517 @default.
- W77274564 hasRelatedWork W2768144306 @default.
- W77274564 hasRelatedWork W2891797895 @default.
- W77274564 hasRelatedWork W2941497555 @default.
- W77274564 hasRelatedWork W2946818299 @default.
- W77274564 hasRelatedWork W2968706564 @default.
- W77274564 hasRelatedWork W2968920907 @default.
- W77274564 hasRelatedWork W2968952845 @default.
- W77274564 hasRelatedWork W3017112467 @default.
- W77274564 hasRelatedWork W3113878419 @default.
- W77274564 hasRelatedWork W2560855020 @default.
- W77274564 hasRelatedWork W2566781705 @default.
- W77274564 hasRelatedWork W3117363150 @default.
- W77274564 hasVolume "2005" @default.
- W77274564 isParatext "false" @default.
- W77274564 isRetracted "false" @default.
- W77274564 magId "77274564" @default.
- W77274564 workType "article" @default.