Matches in SemOpenAlex for { <https://semopenalex.org/work/W7737393> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W7737393 endingPage "331" @default.
- W7737393 startingPage "322" @default.
- W7737393 abstract "Currently, sentiment analysis has become a hot research topic in the natural language processing (NLP) field as it is highly valuable for many practical usages and theoretical studies. As a basic task in sentiment analysis, construction of sentiment lexicon aims to classify one word into positive, neutral or negative according to its sentiment orientation. However, when constructing a sentiment lexicon in Chinese, there are two major problems: 1) Chinese words are very ambiguous, which makes it hard to compute the sentiment orientation of a word; 2) Given the related research on sentiment analysis, available resource for constructing Chinese sentiment lexicons remains weak. Note that there are several corpus and lexicons in English sentiment analysis. In this study, we first use machine translation system with bilingual resources, i.e., English and Chinese information, then we get the sentiment orientation of Chinese words by computing the point-wise mutual information (PMI) values with English seed words. Experiment results from three domains demonstrate that the lexicon generated with our approach reaches an excellent precision and could cover domain information effectively." @default.
- W7737393 created "2016-06-24" @default.
- W7737393 creator A5003885809 @default.
- W7737393 creator A5029830698 @default.
- W7737393 date "2013-01-01" @default.
- W7737393 modified "2023-09-25" @default.
- W7737393 title "Constructing Chinese Sentiment Lexicon Using Bilingual Information" @default.
- W7737393 cites W1998442272 @default.
- W7737393 cites W2052122479 @default.
- W7737393 cites W2063596712 @default.
- W7737393 cites W2099104810 @default.
- W7737393 cites W2112422413 @default.
- W7737393 cites W2114524997 @default.
- W7737393 cites W2131305515 @default.
- W7737393 cites W2155328222 @default.
- W7737393 cites W2166706824 @default.
- W7737393 cites W2787893582 @default.
- W7737393 cites W4248217677 @default.
- W7737393 doi "https://doi.org/10.1007/978-3-642-36337-5_33" @default.
- W7737393 hasPublicationYear "2013" @default.
- W7737393 type Work @default.
- W7737393 sameAs 7737393 @default.
- W7737393 citedByCount "2" @default.
- W7737393 countsByYear W77373932017 @default.
- W7737393 countsByYear W77373932022 @default.
- W7737393 crossrefType "book-chapter" @default.
- W7737393 hasAuthorship W7737393A5003885809 @default.
- W7737393 hasAuthorship W7737393A5029830698 @default.
- W7737393 hasConcept C134306372 @default.
- W7737393 hasConcept C138885662 @default.
- W7737393 hasConcept C154945302 @default.
- W7737393 hasConcept C16345878 @default.
- W7737393 hasConcept C202444582 @default.
- W7737393 hasConcept C203005215 @default.
- W7737393 hasConcept C204321447 @default.
- W7737393 hasConcept C2524010 @default.
- W7737393 hasConcept C2778121359 @default.
- W7737393 hasConcept C33923547 @default.
- W7737393 hasConcept C36503486 @default.
- W7737393 hasConcept C41008148 @default.
- W7737393 hasConcept C41895202 @default.
- W7737393 hasConcept C66402592 @default.
- W7737393 hasConcept C90805587 @default.
- W7737393 hasConcept C9652623 @default.
- W7737393 hasConceptScore W7737393C134306372 @default.
- W7737393 hasConceptScore W7737393C138885662 @default.
- W7737393 hasConceptScore W7737393C154945302 @default.
- W7737393 hasConceptScore W7737393C16345878 @default.
- W7737393 hasConceptScore W7737393C202444582 @default.
- W7737393 hasConceptScore W7737393C203005215 @default.
- W7737393 hasConceptScore W7737393C204321447 @default.
- W7737393 hasConceptScore W7737393C2524010 @default.
- W7737393 hasConceptScore W7737393C2778121359 @default.
- W7737393 hasConceptScore W7737393C33923547 @default.
- W7737393 hasConceptScore W7737393C36503486 @default.
- W7737393 hasConceptScore W7737393C41008148 @default.
- W7737393 hasConceptScore W7737393C41895202 @default.
- W7737393 hasConceptScore W7737393C66402592 @default.
- W7737393 hasConceptScore W7737393C90805587 @default.
- W7737393 hasConceptScore W7737393C9652623 @default.
- W7737393 hasLocation W77373931 @default.
- W7737393 hasOpenAccess W7737393 @default.
- W7737393 hasPrimaryLocation W77373931 @default.
- W7737393 hasRelatedWork W1519260779 @default.
- W7737393 hasRelatedWork W2104192042 @default.
- W7737393 hasRelatedWork W2251392913 @default.
- W7737393 hasRelatedWork W2399355078 @default.
- W7737393 hasRelatedWork W2785680060 @default.
- W7737393 hasRelatedWork W2830950910 @default.
- W7737393 hasRelatedWork W2883560263 @default.
- W7737393 hasRelatedWork W3027466640 @default.
- W7737393 hasRelatedWork W3107474891 @default.
- W7737393 hasRelatedWork W7737393 @default.
- W7737393 isParatext "false" @default.
- W7737393 isRetracted "false" @default.
- W7737393 magId "7737393" @default.
- W7737393 workType "book-chapter" @default.