Matches in SemOpenAlex for { <https://semopenalex.org/work/W77462712> ?p ?o ?g. }
- W77462712 abstract "The main aim of this Ph.D. dissertation is the study of clustering dependent data by means of copulafunctions with particular emphasis on microarray data. Copula functions are a popular multivariate modelingtool in each field where the multivariate dependence is of great interest and their use in clustering has notbeen still investigated.The first part of this work contains the review of the literature of clustering methods, copula functionsand microarray experiments. The attention focuses on the K–means (Hartigan, 1975; Hartigan and Wong,1979), the hierarchical (Everitt, 1974) and the model–based (Fraley and Raftery, 1998, 1999, 2000, 2007)clustering techniques because their performance is compared. Then, the probabilistic interpretation of theSklar’s theorem (Sklar’s, 1959), the estimation methods for copulas like the Inference for Margins (Joe andXu, 1996) and the Archimedean and Elliptical copula families are presented. In the end, applications ofclustering methods and copulas to the genetic and microarray experiments are highlighted.The second part contains the original contribution proposed. A simulation study is performed in order toevaluate the performance of the K–means and the hierarchical bottom–up clustering methods in identifyingclusters according to the dependence structure of the data generating process. Different simulations areperformed by varying different conditions (e.g., the kind of margins (distinct, overlapping and nested) andthe value of the dependence parameter ) and the results are evaluated by means of different measures ofperformance.In light of the simulation results and of the limits of the two investigated clustering methods, a newclustering algorithm based on copula functions (‘CoClust’ in brief) is proposed. The basic idea, the iterativeprocedure of the CoClust and the description of the written R functions with their output are given. TheCoClust algorithm is tested on simulated data (by varying the number of clusters, the copula models, thedependence parameter value and the degree of overlap of margins) and is compared with the performanceof model–based clustering by using different measures of performance, like the percentage of well–identifiednumber of clusters and the not rejection percentage of H0 on .It is shown that the CoClust algorithm allows to overcome all observed limits of the other investigatedclustering techniques and is able to identify clusters according to the dependence structure of the dataindependently of the degree of overlap of margins and the strength of the dependence. The CoClust usesa criterion based on the maximized log–likelihood function of the copula and can virtually account forany possible dependence relationship between observations. Many peculiar characteristics are shown for theCoClust, e.g. its capability of identifying the true number of clusters and the fact that it does not require astarting classification.Finally, the CoClust algorithm is applied to the real microarray data of Hedenfalk et al. (2001) both tothe gene expressions observed in three different cancer samples and to the columns (tumor samples) of thewhole data matrix." @default.
- W77462712 created "2016-06-24" @default.
- W77462712 creator A5021991217 @default.
- W77462712 creator A5070207527 @default.
- W77462712 date "2008-04-02" @default.
- W77462712 modified "2023-10-17" @default.
- W77462712 title "Analyzing the dependence structure of microarray data: a copula–based approach" @default.
- W77462712 cites W1504510381 @default.
- W77462712 cites W1506545167 @default.
- W77462712 cites W160072409 @default.
- W77462712 cites W173939890 @default.
- W77462712 cites W1773976433 @default.
- W77462712 cites W194383147 @default.
- W77462712 cites W1967858306 @default.
- W77462712 cites W1970156673 @default.
- W77462712 cites W1977556410 @default.
- W77462712 cites W1990517717 @default.
- W77462712 cites W1998871699 @default.
- W77462712 cites W2005986688 @default.
- W77462712 cites W2008233728 @default.
- W77462712 cites W2016728733 @default.
- W77462712 cites W2026513874 @default.
- W77462712 cites W2029642148 @default.
- W77462712 cites W2034996109 @default.
- W77462712 cites W2036328877 @default.
- W77462712 cites W2044453692 @default.
- W77462712 cites W2045324481 @default.
- W77462712 cites W2047555270 @default.
- W77462712 cites W2049910743 @default.
- W77462712 cites W2054957279 @default.
- W77462712 cites W2062267023 @default.
- W77462712 cites W2107536612 @default.
- W77462712 cites W2126466006 @default.
- W77462712 cites W2127038280 @default.
- W77462712 cites W2127218421 @default.
- W77462712 cites W2131994307 @default.
- W77462712 cites W2134165090 @default.
- W77462712 cites W2135000328 @default.
- W77462712 cites W2135187880 @default.
- W77462712 cites W2137540340 @default.
- W77462712 cites W2144792853 @default.
- W77462712 cites W2147246240 @default.
- W77462712 cites W2150926065 @default.
- W77462712 cites W2158114082 @default.
- W77462712 cites W2159407107 @default.
- W77462712 cites W2162159470 @default.
- W77462712 cites W2165011536 @default.
- W77462712 cites W2530516905 @default.
- W77462712 cites W2611370172 @default.
- W77462712 cites W2797066837 @default.
- W77462712 cites W2797333853 @default.
- W77462712 cites W2974382686 @default.
- W77462712 cites W2999729612 @default.
- W77462712 cites W3035310783 @default.
- W77462712 cites W3125308528 @default.
- W77462712 cites W3125904670 @default.
- W77462712 cites W3158113069 @default.
- W77462712 cites W58680083 @default.
- W77462712 doi "https://doi.org/10.6092/unibo/amsdottorato/670" @default.
- W77462712 hasPublicationYear "2008" @default.
- W77462712 type Work @default.
- W77462712 sameAs 77462712 @default.
- W77462712 citedByCount "0" @default.
- W77462712 crossrefType "dissertation" @default.
- W77462712 hasAuthorship W77462712A5021991217 @default.
- W77462712 hasAuthorship W77462712A5070207527 @default.
- W77462712 hasConcept C11413529 @default.
- W77462712 hasConcept C119857082 @default.
- W77462712 hasConcept C124101348 @default.
- W77462712 hasConcept C149782125 @default.
- W77462712 hasConcept C154945302 @default.
- W77462712 hasConcept C161584116 @default.
- W77462712 hasConcept C17618745 @default.
- W77462712 hasConcept C2776214188 @default.
- W77462712 hasConcept C33923547 @default.
- W77462712 hasConcept C41008148 @default.
- W77462712 hasConcept C49937458 @default.
- W77462712 hasConcept C73555534 @default.
- W77462712 hasConceptScore W77462712C11413529 @default.
- W77462712 hasConceptScore W77462712C119857082 @default.
- W77462712 hasConceptScore W77462712C124101348 @default.
- W77462712 hasConceptScore W77462712C149782125 @default.
- W77462712 hasConceptScore W77462712C154945302 @default.
- W77462712 hasConceptScore W77462712C161584116 @default.
- W77462712 hasConceptScore W77462712C17618745 @default.
- W77462712 hasConceptScore W77462712C2776214188 @default.
- W77462712 hasConceptScore W77462712C33923547 @default.
- W77462712 hasConceptScore W77462712C41008148 @default.
- W77462712 hasConceptScore W77462712C49937458 @default.
- W77462712 hasConceptScore W77462712C73555534 @default.
- W77462712 hasLocation W774627121 @default.
- W77462712 hasOpenAccess W77462712 @default.
- W77462712 hasPrimaryLocation W774627121 @default.
- W77462712 hasRelatedWork W100343593 @default.
- W77462712 hasRelatedWork W128018606 @default.
- W77462712 hasRelatedWork W1482639564 @default.
- W77462712 hasRelatedWork W1493990815 @default.
- W77462712 hasRelatedWork W1560329957 @default.
- W77462712 hasRelatedWork W1974406774 @default.
- W77462712 hasRelatedWork W1985594509 @default.