Matches in SemOpenAlex for { <https://semopenalex.org/work/W77950420> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W77950420 endingPage "194" @default.
- W77950420 startingPage "188" @default.
- W77950420 abstract "Abstract In this paper, we investigate the use of assessments of conditional previsions for modeling prior information on the parameter of a binomial model as a way of obtaining non-vacuous posterior previsions via natural extension. More specifically, we argue that a useful method for obtaining an imprecise prevision for the parameter θ of a binomial model, given a sample of size n showing r successes, is to assess imprecise previsions for θ which are conditional on samples having sizes larger than n. Inferences obtained using this approach are compared to Walley's proposal for learning from a bag of marbles. Keywords: conditional lower previsions, prior information modeling, natural extension, generalized Bayes rule, binomial model 1 Introduction Even if the theory of coherent lower previsions (CLP, Walley [1991]) is quite appealing for decision-making under uncertainty, there are still few published applications of this theory, in part because inferences obtained using natural extension tend to be excessively imprecise from the point of view of the practitioner. As was pointed out by Walley [1996b], this occurs when the assumptions and prior judgments are themselves excessively imprecise. However, one of the appealing features of CLP theory is the possibility of making inferences and taking rational decisions based on few other assumptions than coherence. If one still wants to base inferences on natural extension, the challenge therefore resides in developing, for various statistical models, strategies for encoding prior information efficiently, in the sense that few assessments of imprecise previsions be necessary to obtain useful results. The purpose of this paper is to propose and illustrate a simple method for using natural extension to obtain imprecise, but still useful, coherent posterior previsions for the parameter of a binomial model from a small number of prior judgments. It aims at showing the advantages of CLP theory, and in particular of natural extension, for the type of problems encountered by the practitioner who has to make inferences, and eventually take action, based on small samples. Various inference frameworks that have been proposed for the binomial model are reviewed and discussed in Section 2. In Section 3, we propose a different approach, based on a finite number of assessments of the conditional expectation of the parameter of the binomial model for sample sizes larger than the one at hand. These ideas are illustrated in Section 4, and compared to the approach for learning from a bag of marbles proposed by Walley [1996a]. Section 5 contains a general discussion and some conclusions." @default.
- W77950420 created "2016-06-24" @default.
- W77950420 creator A5073132449 @default.
- W77950420 date "2001-01-01" @default.
- W77950420 modified "2023-09-23" @default.
- W77950420 title "Posterior previsions for the parameter of a binomial model via natural extension of a finite number of judgments" @default.
- W77950420 cites W1481747975 @default.
- W77950420 cites W1494902407 @default.
- W77950420 cites W1579538073 @default.
- W77950420 cites W1964676348 @default.
- W77950420 cites W1968293352 @default.
- W77950420 cites W1977373364 @default.
- W77950420 cites W1988520084 @default.
- W77950420 cites W2001994823 @default.
- W77950420 cites W2013141630 @default.
- W77950420 cites W2015457780 @default.
- W77950420 cites W2017215485 @default.
- W77950420 cites W2038584697 @default.
- W77950420 cites W2108175518 @default.
- W77950420 cites W2145896481 @default.
- W77950420 cites W2177448781 @default.
- W77950420 hasPublicationYear "2001" @default.
- W77950420 type Work @default.
- W77950420 sameAs 77950420 @default.
- W77950420 citedByCount "0" @default.
- W77950420 crossrefType "proceedings-article" @default.
- W77950420 hasAuthorship W77950420A5073132449 @default.
- W77950420 hasConcept C105795698 @default.
- W77950420 hasConcept C107673813 @default.
- W77950420 hasConcept C122203268 @default.
- W77950420 hasConcept C130648207 @default.
- W77950420 hasConcept C144237770 @default.
- W77950420 hasConcept C154945302 @default.
- W77950420 hasConcept C160234255 @default.
- W77950420 hasConcept C199360897 @default.
- W77950420 hasConcept C207201462 @default.
- W77950420 hasConcept C2778029271 @default.
- W77950420 hasConcept C2781181686 @default.
- W77950420 hasConcept C2781315470 @default.
- W77950420 hasConcept C33923547 @default.
- W77950420 hasConcept C41008148 @default.
- W77950420 hasConcept C41054675 @default.
- W77950420 hasConceptScore W77950420C105795698 @default.
- W77950420 hasConceptScore W77950420C107673813 @default.
- W77950420 hasConceptScore W77950420C122203268 @default.
- W77950420 hasConceptScore W77950420C130648207 @default.
- W77950420 hasConceptScore W77950420C144237770 @default.
- W77950420 hasConceptScore W77950420C154945302 @default.
- W77950420 hasConceptScore W77950420C160234255 @default.
- W77950420 hasConceptScore W77950420C199360897 @default.
- W77950420 hasConceptScore W77950420C207201462 @default.
- W77950420 hasConceptScore W77950420C2778029271 @default.
- W77950420 hasConceptScore W77950420C2781181686 @default.
- W77950420 hasConceptScore W77950420C2781315470 @default.
- W77950420 hasConceptScore W77950420C33923547 @default.
- W77950420 hasConceptScore W77950420C41008148 @default.
- W77950420 hasConceptScore W77950420C41054675 @default.
- W77950420 hasLocation W779504201 @default.
- W77950420 hasOpenAccess W77950420 @default.
- W77950420 hasPrimaryLocation W779504201 @default.
- W77950420 hasRelatedWork W136596006 @default.
- W77950420 hasRelatedWork W1785644077 @default.
- W77950420 hasRelatedWork W1965943369 @default.
- W77950420 hasRelatedWork W1986480666 @default.
- W77950420 hasRelatedWork W2004744198 @default.
- W77950420 hasRelatedWork W2139000451 @default.
- W77950420 hasRelatedWork W2141002476 @default.
- W77950420 hasRelatedWork W2557856722 @default.
- W77950420 hasRelatedWork W2789384489 @default.
- W77950420 hasRelatedWork W2949454430 @default.
- W77950420 hasRelatedWork W2950322933 @default.
- W77950420 hasRelatedWork W2986138611 @default.
- W77950420 hasRelatedWork W3006565005 @default.
- W77950420 hasRelatedWork W305875466 @default.
- W77950420 hasRelatedWork W306194347 @default.
- W77950420 hasRelatedWork W3103281820 @default.
- W77950420 hasRelatedWork W3104112171 @default.
- W77950420 hasRelatedWork W3122179594 @default.
- W77950420 hasRelatedWork W3125151405 @default.
- W77950420 hasRelatedWork W3145429019 @default.
- W77950420 isParatext "false" @default.
- W77950420 isRetracted "false" @default.
- W77950420 magId "77950420" @default.
- W77950420 workType "article" @default.