Matches in SemOpenAlex for { <https://semopenalex.org/work/W780135239> ?p ?o ?g. }
- W780135239 abstract "There are few reliable computational techniques applicable to the problem of structural phase behaviour. This is starkly emphasised by the fact that there are still a number of unanswered questions concerning the solid state of some of the simplest models of matter. To determine the phase behaviour of a given system we invoke the machinery of statistical physics, which identifies the equilibrium phase as that which minimises the free-energy. This type of problem can only be dealt with fully via numerical simulation, as any less direct approach will involve making some uncontrolled approximation. In particular, a numerical simulation can be used to evaluate the free-energy difference between two phases if the simulation is free to visit them both. However, it has proven very difficult to find an algorithm which is capable of efficiently exploring two different phases, particularly when one or both of them is a crystalline solid. This thesis builds on previous work [1] (Physical Review Letters 79 p.3002), exploring a new Monte Carlo approach to this class of problem. This new simulation technique uses a global coordinate transformation to switch between two different crystalline structures. Generally, this ‘lattice switch’ is found to be extremely unlikely to succeed in a normal Monte Carlo simulation. To overcome this, extendedsampling techniques are used to encourage the simulation to visit ‘gateway’ microstates where the switch will be successful. After compensating for this bias in the sampling, the free-energy difference between the two structures can be evaluated directly from their relative probabilities. As concrete examples on which to base the research, the lattice-switch Monte Carlo method is used to determine the free-energy difference between the face-centred cubic (fcc) and hexagonal close-packed (hcp) phases of two generic model systems — the hard-sphere and Lennard-Jones potentials. The structural phase behaviour of the hard-sphere solid is determined at densities near melting and in the close-packed limit. The factors controlling the efficiency of the lattice-switch approach are explored, as is the character of the ‘gateway’ microstates. The face-centred cubic structure is identified as the thermodynamically stable phase, and the free-energy difference between the two structures is determined with high precision. These results are shown to be in complete agreement with the results of other authors in the field (published during the course of this work), some of whom adopted the lattice-switch method for their calculations. Also, the results are favourably compared against the experimentally" @default.
- W780135239 created "2016-06-24" @default.
- W780135239 creator A5065442729 @default.
- W780135239 date "2001-01-01" @default.
- W780135239 modified "2023-09-26" @default.
- W780135239 title "Structural Phase Behaviour Via Monte Carlo Techniques" @default.
- W780135239 cites W1479900802 @default.
- W780135239 cites W1518918689 @default.
- W780135239 cites W1561424154 @default.
- W780135239 cites W1625783871 @default.
- W780135239 cites W1658817197 @default.
- W780135239 cites W1756704353 @default.
- W780135239 cites W1867529109 @default.
- W780135239 cites W1964386634 @default.
- W780135239 cites W1968746837 @default.
- W780135239 cites W1971184914 @default.
- W780135239 cites W1972234296 @default.
- W780135239 cites W1972248995 @default.
- W780135239 cites W1972585245 @default.
- W780135239 cites W1974223173 @default.
- W780135239 cites W1974788458 @default.
- W780135239 cites W1975781844 @default.
- W780135239 cites W1975871531 @default.
- W780135239 cites W1985273451 @default.
- W780135239 cites W1988730004 @default.
- W780135239 cites W1989272388 @default.
- W780135239 cites W1989753444 @default.
- W780135239 cites W1990578916 @default.
- W780135239 cites W1993320948 @default.
- W780135239 cites W1998994860 @default.
- W780135239 cites W1999229257 @default.
- W780135239 cites W2000685381 @default.
- W780135239 cites W2001789504 @default.
- W780135239 cites W2004366174 @default.
- W780135239 cites W2004407811 @default.
- W780135239 cites W2004612535 @default.
- W780135239 cites W2004746871 @default.
- W780135239 cites W2004948597 @default.
- W780135239 cites W2007008659 @default.
- W780135239 cites W2007487406 @default.
- W780135239 cites W2007691483 @default.
- W780135239 cites W2009267666 @default.
- W780135239 cites W2013979082 @default.
- W780135239 cites W2019145327 @default.
- W780135239 cites W2019573349 @default.
- W780135239 cites W2020283657 @default.
- W780135239 cites W2021910659 @default.
- W780135239 cites W2025625972 @default.
- W780135239 cites W2027384625 @default.
- W780135239 cites W2028902303 @default.
- W780135239 cites W2029332051 @default.
- W780135239 cites W2029362311 @default.
- W780135239 cites W2029651124 @default.
- W780135239 cites W2032556527 @default.
- W780135239 cites W2032815619 @default.
- W780135239 cites W2036862083 @default.
- W780135239 cites W2037859325 @default.
- W780135239 cites W2038012374 @default.
- W780135239 cites W2041591617 @default.
- W780135239 cites W2044329559 @default.
- W780135239 cites W2044843357 @default.
- W780135239 cites W2046296104 @default.
- W780135239 cites W2048084957 @default.
- W780135239 cites W2048685367 @default.
- W780135239 cites W2049336040 @default.
- W780135239 cites W2050112078 @default.
- W780135239 cites W2052202017 @default.
- W780135239 cites W2055969619 @default.
- W780135239 cites W2055996439 @default.
- W780135239 cites W2056722718 @default.
- W780135239 cites W2057183009 @default.
- W780135239 cites W2060650404 @default.
- W780135239 cites W2061142965 @default.
- W780135239 cites W2061832018 @default.
- W780135239 cites W2061937898 @default.
- W780135239 cites W2062709217 @default.
- W780135239 cites W2064391415 @default.
- W780135239 cites W2066727515 @default.
- W780135239 cites W2067192888 @default.
- W780135239 cites W2068997275 @default.
- W780135239 cites W2074337500 @default.
- W780135239 cites W2075379212 @default.
- W780135239 cites W2077958064 @default.
- W780135239 cites W2081693079 @default.
- W780135239 cites W2082130298 @default.
- W780135239 cites W2083471911 @default.
- W780135239 cites W2085123511 @default.
- W780135239 cites W2087126020 @default.
- W780135239 cites W2087837409 @default.
- W780135239 cites W2087848098 @default.
- W780135239 cites W2088252041 @default.
- W780135239 cites W2090014029 @default.
- W780135239 cites W2090749424 @default.
- W780135239 cites W2097650833 @default.
- W780135239 cites W2098945363 @default.
- W780135239 cites W2103521464 @default.
- W780135239 cites W2105800319 @default.
- W780135239 cites W2108538165 @default.
- W780135239 cites W2114503082 @default.
- W780135239 cites W2118422650 @default.