Matches in SemOpenAlex for { <https://semopenalex.org/work/W78236450> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W78236450 abstract "We present algorithmic tests to determine whether smooth functions are convex over certain regions, in an algebraic modeling system implemented in the Premium Solver Platform for Microsoft Excel. We apply convexity determination to the objective, constraints and bounds of an optimization problem, to determine whether a locally optimal solution will be globally optimal, and whether an interior point algorithm for convex problems can be used as the solution method. The algorithms generally rely on fast and accurate computation of the ‘Hessian sign’ or the full interval Hessian of each problem function, making automatic differentiation techniques a practical requirement for their use; their effectiveness is improved by using constraint propagation techniques to narrow the intervals over which the functions are evaluated. We compare different convexity determination algorithms on a test set of models and functions defined by expressions in the Microsoft Excel formula language. Introduction: Convexity is clearly a desirable property for an optimization model. If a model is known or can be shown to be convex, we can be confident of finding a globally optimal solution, and we can apply (among others) high performance interior point methods to find that solution. Linear programming (LP) problems are of course convex, and quadratic programming (QP) problems are convex if the Hessian of the objective is positive semidefinite. But for general smooth nonlinear problems, it is nontrivial to determine whether each problem function is convex over the feasible region determined by bounds on the variables and other constraint functions. Yet many smooth nonlinear problems of interest may be convex, more than is commonly realized; for example, Stephen Boyd [1], who has studied many such problems arising in electrical engineering, has described a wide range of practical problems shown to be convex. In view of the importance of convexity, it is somewhat surprising that existing algebraic modeling systems do not provide much support for testing convexity of optimization problems written in the modeling language. This paper describes an effort to implement convexity determination in the framework of the Microsoft Excel Solver, specifically in the Premium Solver Platform, an upward compatible extension of the Excel Solver aimed at challenging industrial optimization problems of all types. The modeling language in this case is the Excel formula language, which is richly expressive with over 300 built-in functions. Our convexity tests utilize support in the Premium Solver Platform for model diagnosis, interval evaluation and automatic differentiation of Excel spreadsheet formulas, as previously described [2, 3]. They may prove or disprove convexity or yield inconclusive results, but in many practical cases they yield useful information for the modeler and the solver. In this paper, functions are assumed to be smooth, though we note in the summary that a variety of techniques exist to convert certain commonly used non-smooth constraint functions (e.g. IF, MIN, MAX) into linear constraints with additional binary integer variables – potentially yielding a mixed-integer convex problem. The original problem is: given a function (twice continuously differentiable in the box ), prove computationally that the function is convex, concave, or neither convex nor concave in . In our implementation four general steps are used, in order of increasing computational cost: ) ( , : 2 x x C f R R f n ∈ → ∈" @default.
- W78236450 created "2016-06-24" @default.
- W78236450 creator A5000281370 @default.
- W78236450 creator A5005797655 @default.
- W78236450 creator A5076361909 @default.
- W78236450 date "2004-01-01" @default.
- W78236450 modified "2023-09-27" @default.
- W78236450 title "Convexity Determination in the Microsoft Excel Solver Using Automatic Differentiation Techniques" @default.
- W78236450 cites W1532625281 @default.
- W78236450 cites W2038254351 @default.
- W78236450 cites W2296319761 @default.
- W78236450 hasPublicationYear "2004" @default.
- W78236450 type Work @default.
- W78236450 sameAs 78236450 @default.
- W78236450 citedByCount "3" @default.
- W78236450 countsByYear W782364502013 @default.
- W78236450 crossrefType "journal-article" @default.
- W78236450 hasAuthorship W78236450A5000281370 @default.
- W78236450 hasAuthorship W78236450A5005797655 @default.
- W78236450 hasAuthorship W78236450A5076361909 @default.
- W78236450 hasConcept C106159729 @default.
- W78236450 hasConcept C112680207 @default.
- W78236450 hasConcept C11413529 @default.
- W78236450 hasConcept C115527620 @default.
- W78236450 hasConcept C121332964 @default.
- W78236450 hasConcept C126255220 @default.
- W78236450 hasConcept C157972887 @default.
- W78236450 hasConcept C158622935 @default.
- W78236450 hasConcept C162324750 @default.
- W78236450 hasConcept C203616005 @default.
- W78236450 hasConcept C2524010 @default.
- W78236450 hasConcept C2778770139 @default.
- W78236450 hasConcept C28826006 @default.
- W78236450 hasConcept C33923547 @default.
- W78236450 hasConcept C41008148 @default.
- W78236450 hasConcept C62520636 @default.
- W78236450 hasConcept C72134830 @default.
- W78236450 hasConcept C81845259 @default.
- W78236450 hasConceptScore W78236450C106159729 @default.
- W78236450 hasConceptScore W78236450C112680207 @default.
- W78236450 hasConceptScore W78236450C11413529 @default.
- W78236450 hasConceptScore W78236450C115527620 @default.
- W78236450 hasConceptScore W78236450C121332964 @default.
- W78236450 hasConceptScore W78236450C126255220 @default.
- W78236450 hasConceptScore W78236450C157972887 @default.
- W78236450 hasConceptScore W78236450C158622935 @default.
- W78236450 hasConceptScore W78236450C162324750 @default.
- W78236450 hasConceptScore W78236450C203616005 @default.
- W78236450 hasConceptScore W78236450C2524010 @default.
- W78236450 hasConceptScore W78236450C2778770139 @default.
- W78236450 hasConceptScore W78236450C28826006 @default.
- W78236450 hasConceptScore W78236450C33923547 @default.
- W78236450 hasConceptScore W78236450C41008148 @default.
- W78236450 hasConceptScore W78236450C62520636 @default.
- W78236450 hasConceptScore W78236450C72134830 @default.
- W78236450 hasConceptScore W78236450C81845259 @default.
- W78236450 hasLocation W782364501 @default.
- W78236450 hasOpenAccess W78236450 @default.
- W78236450 hasPrimaryLocation W782364501 @default.
- W78236450 hasRelatedWork W138233800 @default.
- W78236450 hasRelatedWork W141398690 @default.
- W78236450 hasRelatedWork W1503382895 @default.
- W78236450 hasRelatedWork W1609676736 @default.
- W78236450 hasRelatedWork W2105235982 @default.
- W78236450 hasRelatedWork W2113642685 @default.
- W78236450 hasRelatedWork W2151460223 @default.
- W78236450 hasRelatedWork W2178935672 @default.
- W78236450 hasRelatedWork W2296319761 @default.
- W78236450 hasRelatedWork W2443618434 @default.
- W78236450 hasRelatedWork W2482837509 @default.
- W78236450 hasRelatedWork W2603425655 @default.
- W78236450 hasRelatedWork W2786741601 @default.
- W78236450 hasRelatedWork W2790096231 @default.
- W78236450 hasRelatedWork W2796079430 @default.
- W78236450 hasRelatedWork W2906804670 @default.
- W78236450 hasRelatedWork W2915200610 @default.
- W78236450 hasRelatedWork W2950786644 @default.
- W78236450 hasRelatedWork W2973567561 @default.
- W78236450 hasRelatedWork W3155204596 @default.
- W78236450 isParatext "false" @default.
- W78236450 isRetracted "false" @default.
- W78236450 magId "78236450" @default.
- W78236450 workType "article" @default.