Matches in SemOpenAlex for { <https://semopenalex.org/work/W788250537> ?p ?o ?g. }
- W788250537 endingPage "430" @default.
- W788250537 startingPage "417" @default.
- W788250537 abstract "We develop correlated random measures, random measures where the atom weights can exhibit a flexible pattern of dependence, and use them to develop powerful hierarchical Bayesian nonparametric models. Hierarchical Bayesian nonparametric models are usually built from completely random measures, a Poisson-process-based construction in which the atom weights are independent. Completely random measures imply strong independence assumptions in the corresponding hierarchical model, and these assumptions are often misplaced in real-world settings. Correlated random measures address this limitation. They model correlation within the measure by using a Gaussian process in concert with the Poisson process. With correlated random measures, for example, we can develop a latent feature model for which we can infer both the properties of the latent features and their dependency pattern. We develop several other examples as well. We study a correlated random measure model of pairwise count data. We derive an efficient variational inference algorithm and show improved predictive performance on large datasets of documents, web clicks, and electronic health records. Supplementary materials for this article are available online." @default.
- W788250537 created "2016-06-24" @default.
- W788250537 creator A5022202456 @default.
- W788250537 creator A5070920982 @default.
- W788250537 date "2017-11-13" @default.
- W788250537 modified "2023-10-14" @default.
- W788250537 title "Correlated Random Measures" @default.
- W788250537 cites W1516111018 @default.
- W788250537 cites W166614460 @default.
- W788250537 cites W1721828833 @default.
- W788250537 cites W1967687583 @default.
- W788250537 cites W1967884834 @default.
- W788250537 cites W1969415786 @default.
- W788250537 cites W1981251392 @default.
- W788250537 cites W1981890344 @default.
- W788250537 cites W1986966428 @default.
- W788250537 cites W1987532879 @default.
- W788250537 cites W1991479744 @default.
- W788250537 cites W1996666626 @default.
- W788250537 cites W2000479469 @default.
- W788250537 cites W2005564522 @default.
- W788250537 cites W2027235406 @default.
- W788250537 cites W2031988475 @default.
- W788250537 cites W2044410728 @default.
- W788250537 cites W2065594991 @default.
- W788250537 cites W2069429561 @default.
- W788250537 cites W2085534751 @default.
- W788250537 cites W2087309226 @default.
- W788250537 cites W2091797506 @default.
- W788250537 cites W2109614047 @default.
- W788250537 cites W2117111086 @default.
- W788250537 cites W2127498532 @default.
- W788250537 cites W2144100511 @default.
- W788250537 cites W2154099718 @default.
- W788250537 cites W2158266063 @default.
- W788250537 cites W2174706414 @default.
- W788250537 cites W2262824916 @default.
- W788250537 cites W3104490327 @default.
- W788250537 cites W3104819538 @default.
- W788250537 cites W4211049957 @default.
- W788250537 cites W4293052541 @default.
- W788250537 cites W615510159 @default.
- W788250537 doi "https://doi.org/10.1080/01621459.2016.1260468" @default.
- W788250537 hasPublicationYear "2017" @default.
- W788250537 type Work @default.
- W788250537 sameAs 788250537 @default.
- W788250537 citedByCount "13" @default.
- W788250537 countsByYear W7882505372016 @default.
- W788250537 countsByYear W7882505372017 @default.
- W788250537 countsByYear W7882505372018 @default.
- W788250537 countsByYear W7882505372019 @default.
- W788250537 countsByYear W7882505372020 @default.
- W788250537 countsByYear W7882505372021 @default.
- W788250537 countsByYear W7882505372023 @default.
- W788250537 crossrefType "journal-article" @default.
- W788250537 hasAuthorship W788250537A5022202456 @default.
- W788250537 hasAuthorship W788250537A5070920982 @default.
- W788250537 hasBestOaLocation W7882505372 @default.
- W788250537 hasConcept C102366305 @default.
- W788250537 hasConcept C105795698 @default.
- W788250537 hasConcept C107673813 @default.
- W788250537 hasConcept C119857082 @default.
- W788250537 hasConcept C121332964 @default.
- W788250537 hasConcept C124101348 @default.
- W788250537 hasConcept C126322002 @default.
- W788250537 hasConcept C144986985 @default.
- W788250537 hasConcept C154945302 @default.
- W788250537 hasConcept C160234255 @default.
- W788250537 hasConcept C163716315 @default.
- W788250537 hasConcept C168743327 @default.
- W788250537 hasConcept C184898388 @default.
- W788250537 hasConcept C205301714 @default.
- W788250537 hasConcept C21031990 @default.
- W788250537 hasConcept C2776214188 @default.
- W788250537 hasConcept C2780009758 @default.
- W788250537 hasConcept C33923547 @default.
- W788250537 hasConcept C41008148 @default.
- W788250537 hasConcept C61326573 @default.
- W788250537 hasConcept C62520636 @default.
- W788250537 hasConcept C71924100 @default.
- W788250537 hasConcept C79772020 @default.
- W788250537 hasConcept C95190672 @default.
- W788250537 hasConceptScore W788250537C102366305 @default.
- W788250537 hasConceptScore W788250537C105795698 @default.
- W788250537 hasConceptScore W788250537C107673813 @default.
- W788250537 hasConceptScore W788250537C119857082 @default.
- W788250537 hasConceptScore W788250537C121332964 @default.
- W788250537 hasConceptScore W788250537C124101348 @default.
- W788250537 hasConceptScore W788250537C126322002 @default.
- W788250537 hasConceptScore W788250537C144986985 @default.
- W788250537 hasConceptScore W788250537C154945302 @default.
- W788250537 hasConceptScore W788250537C160234255 @default.
- W788250537 hasConceptScore W788250537C163716315 @default.
- W788250537 hasConceptScore W788250537C168743327 @default.
- W788250537 hasConceptScore W788250537C184898388 @default.
- W788250537 hasConceptScore W788250537C205301714 @default.
- W788250537 hasConceptScore W788250537C21031990 @default.
- W788250537 hasConceptScore W788250537C2776214188 @default.