Matches in SemOpenAlex for { <https://semopenalex.org/work/W790344603> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W790344603 abstract "Asthma is a heterogeneity disease that is mostly managed successfully using bronchodilators and anti-inflammatory drugs. Around 10%-15% of asthmatics however have difficult or severe asthma which is less responsive to treatments. Asthma and in particular severe asthma are now thought of a description of symptoms which may contain possible sub-groups with possible different pathologies which could be useful for targeting different drugs for different sub-groups. However little statistical work has been carried out to determine these sub-phenotypes. Studies have been carried out to partition severe asthma variables in to a number of sub-groups but the algorithms used in these studies are not based on statistical inference and it is difficult to select the number of best fitting sub-groups using such methods. It is also unclear where the clusters or sub-groups returned are actual sub-groups or reflect a bigger non-normal distribution. In the thesis we have developed a statistical model that combines factor analysis, a method used to obtain independent factors to describe processes allowing for variation over variables, and infinite mixture modelling, a process that involves determining the most probable number of mixtures or clusters thus allowing for variation over individuals. This model created is a Dirichlet process normal mixture latent variable model DPNMLVN and it is capable of determining the correct number of mixtures over each factor. The model was tested with simulations and used to analysis two severe asthma datasets and a cancer clinical trial. Sub-groups were found that reflect a high Eosinophilic group and an average eosinophilic group, a late onset older non atopic group and a highly atopic younger early onset group. In the clinical trial data 3 distinct mixtures were found relating to existing biomarkers not used in the mixture analysis. Acknowledgements I would like to thank many people who have helped me along the way as this thesis could not have been possible without their help and encouragement. I wish to thank my primary supervisor Prof John Thompson for moulding my formless enthusiasm and energy for the project in to something logical, presentable and readable and for guiding me through the 4 year project from inception to completion and beyond. Thanks go to Astra Zeneca and in particular Dr Athula Hearth for sponsoring my PhD and to Dr Ruth Green and Prof John Thompson for setting up my PhD. Thanks also go to my second supervisor, Prof Chris Brightling for taking over as second supervisor from Dr Ruth Green in my first year, supporting me through my project and beyond and for helping out with all the clinical issues involved in my work. All involved in the thesis were incredible patience and kind throughout my PhD experience. A big thank you to all who supported me and encouraged me especially family and friends and all who work for the University of Leicester especially people in Health Sciences, Infection, Immunity and Inflammation, Student Support and Development and the University Bookshop. This was greatly appreciated." @default.
- W790344603 created "2016-06-24" @default.
- W790344603 creator A5038597002 @default.
- W790344603 date "2013-01-01" @default.
- W790344603 modified "2023-09-24" @default.
- W790344603 title "Modelling Severe Asthma Variation" @default.
- W790344603 cites W1494730498 @default.
- W790344603 cites W1517555081 @default.
- W790344603 cites W1698248478 @default.
- W790344603 cites W1969771395 @default.
- W790344603 cites W1975373828 @default.
- W790344603 cites W1986430351 @default.
- W790344603 cites W1997817740 @default.
- W790344603 cites W2016381774 @default.
- W790344603 cites W2016608935 @default.
- W790344603 cites W2018432774 @default.
- W790344603 cites W2027757407 @default.
- W790344603 cites W2032347458 @default.
- W790344603 cites W2035632341 @default.
- W790344603 cites W2042217732 @default.
- W790344603 cites W2047054386 @default.
- W790344603 cites W2051316645 @default.
- W790344603 cites W2069330998 @default.
- W790344603 cites W2069429561 @default.
- W790344603 cites W2070047497 @default.
- W790344603 cites W2072866330 @default.
- W790344603 cites W2074023674 @default.
- W790344603 cites W2101998432 @default.
- W790344603 cites W2105985183 @default.
- W790344603 cites W2106657345 @default.
- W790344603 cites W2109676782 @default.
- W790344603 cites W2111609315 @default.
- W790344603 cites W2113447353 @default.
- W790344603 cites W2120695425 @default.
- W790344603 cites W2125185478 @default.
- W790344603 cites W2137471889 @default.
- W790344603 cites W2138475078 @default.
- W790344603 cites W2143761378 @default.
- W790344603 cites W2144154786 @default.
- W790344603 cites W2147301280 @default.
- W790344603 cites W2149368642 @default.
- W790344603 cites W2150035260 @default.
- W790344603 cites W2150473224 @default.
- W790344603 cites W2154159315 @default.
- W790344603 cites W2156972485 @default.
- W790344603 cites W2158103813 @default.
- W790344603 cites W2162021827 @default.
- W790344603 cites W2162946431 @default.
- W790344603 cites W2166976594 @default.
- W790344603 cites W2167511520 @default.
- W790344603 cites W2185750390 @default.
- W790344603 cites W2582743722 @default.
- W790344603 cites W2612166593 @default.
- W790344603 cites W3099514962 @default.
- W790344603 hasPublicationYear "2013" @default.
- W790344603 type Work @default.
- W790344603 sameAs 790344603 @default.
- W790344603 citedByCount "0" @default.
- W790344603 crossrefType "dissertation" @default.
- W790344603 hasAuthorship W790344603A5038597002 @default.
- W790344603 hasConcept C105795698 @default.
- W790344603 hasConcept C154945302 @default.
- W790344603 hasConcept C203014093 @default.
- W790344603 hasConcept C2776042228 @default.
- W790344603 hasConcept C2776214188 @default.
- W790344603 hasConcept C33923547 @default.
- W790344603 hasConcept C41008148 @default.
- W790344603 hasConcept C71924100 @default.
- W790344603 hasConceptScore W790344603C105795698 @default.
- W790344603 hasConceptScore W790344603C154945302 @default.
- W790344603 hasConceptScore W790344603C203014093 @default.
- W790344603 hasConceptScore W790344603C2776042228 @default.
- W790344603 hasConceptScore W790344603C2776214188 @default.
- W790344603 hasConceptScore W790344603C33923547 @default.
- W790344603 hasConceptScore W790344603C41008148 @default.
- W790344603 hasConceptScore W790344603C71924100 @default.
- W790344603 hasLocation W7903446031 @default.
- W790344603 hasOpenAccess W790344603 @default.
- W790344603 hasPrimaryLocation W7903446031 @default.
- W790344603 isParatext "false" @default.
- W790344603 isRetracted "false" @default.
- W790344603 magId "790344603" @default.
- W790344603 workType "dissertation" @default.